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Abstract

In response to climatic and anthropogenic factors, plant community distributions change
over centuries and decades. Since settlement of the Great Basin by European Americans about
140 years ago, sngldeaf pinyon (Pinus monophylla [Torr. & Frem.]), and Utah juniper
(Juniperus osteosperma [Torr.] Little) have increased in area, dengity, and dominance,
encroaching into adjacent sagebrush communities. Increasesin pinyon and juniper density and
biomass are resulting in the decline of the associated understory plant communities aswell as
potentidly more intense fire behavior as fuel 1oads contributed by the trees increase. The
purpose of this sudy isto quantify changesin understory plant community biomass and fuel
loads associated with variation in both eevation and tree dominance. The weight of understory
plant species by fud timelag Sze classes as well as biomass by life form (grass, forb and shrub)
were estimated in areas of varying pinyonjuniper dominance digtributed over an devation
gradient in centrd Nevada. Regression equations for predicting biomass were derived and
tested with a subset of measured and weighed plants. The equations providing the best overal
results for caculating fue loadings and biomass from plant Size measurements were determined
by using graphica andysis, R and split-sample cross vaidations. Understory fue loadings and
biomass were analyzed graphicaly and with Anadlyss of covariance and ANOVA to determine
differencesin fud loadings and understory characteristics with variation in tree dominance and
elevation. Both the biomass and the associated fuel 1oads of shrubs, forbs and grasses were

found to be affected more by tree dominance than by eevation.
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I ntroduction

Background

In response to climatic and anthropogenic factors, plant community distributions change
over centuries and decades (Thompson 1990, Miller and Rose 1999, Swetnam et al. 1999,
Lyford et d. 2003). Evidence of plant communities trapped in sediment or packrat middens
provide arecord of historic plant distributions (Swetnam et d. 1999). When multiple types or
dense networks of these proxy data are used, the resulting historical account can be greetly
improved (Swetnam et a. 1999, Renssen et d. 2001).

Although higtoric dimeate regimes for the Great Basin are generdly inferred from plant
distribution shifts read from proxy records, these hitoric climate changes are aso corroborated
by evidence from fluvia geomorphology and ice core andyses (Miller and Tausch 2001).

In the Great Badin, species have migrated latitudindly as well as devationdly following
climatic changes. Between 10,500 and 5,000 years before present the warmer climate
dimulated the northward movement of the northernmost edge of the singleleaf pinyon
digribution (Figure 1). Precipitation increased from 5,000 to 3,500 years BP leading into the
much cooler and wetter climate of the Neoglaciad period 3,500 to 2,600 years BP. Dueto the
Neoglacid climate, the upper devation limits of woodlands moved down and woodland
expanson occurred at low and mid elevations. A mgor drop in precipitation between 2,600
and 1,600 years BP, the Post-Neoglacia drought, then followed (Tausch et d. 2004). The
lower precipitation of this period led to a decline in woodlands and an increase in desert shrub

vegetation. The climate was generaly warmer with an increase in summer precipitation from



1,600 to 650 years BP, leading to some re-expansion of woodlands. The time between 650 to
150 years BPis termed the Little Ice Age due to the cooler and somewhat wetter conditions of
thisera Woodlands steadily expanded within their range during the Little Ice Age (Tausch et

a. 2004). During the past 150 years temperatures have been dowly risng. Current woodland
expandon is exceeding previoudy known expansion rates, and ismogt likdly triggered by factors

in addition to climate (Miller and Tausch 2001).

Figure 1. Higtorica and present distribution of angleleaf pinyon. Mottled gray aress indicate
current digtribution and lines indicate northern extent of historic distribution two, five and ten
thousand years before present. Thisimage was adapted from Thompson (1990) and Nowak et
al. (1994).

Pinyon and juniper species currently occupy over 30 million hectaresin the American

West (West 1999), but are estimated to have covered less than 3 million hectares before



European settlement (Gedney et al. 1999, Miller et d. 1999). It is estimated that 90% of the
western juniper, Juniperus occidentalis (Hook.), woodlands present today have aisenin only
the past 100 years (Miller et d. 2000). Increasesin pinyon and juniper dengty in just the past
few decades are noticeable in portions of aerid photos of the study site, Underdown Canyon
(Figure 2).

Recent increases in the range and dengity of pinyon and juniper are often attributed to
fire suppresson and domestic livestock grazing as well as changesin climate (Tausch et d.
1981, Miller and Wigand 1994) and increasing atmaospheric CO, concentrations (Johnson et d.
1990). The cooler and wetter period of the Little Ice Age enhanced tree as well as herbaceous
gpecies growth. An abundance of fine fuds from herbaceous plants during this era probably led
to higher fire frequencies, thus limiting woodland expansion. Fire frequencies have purportedly
declined since the end of the Little Ice Age because of areduction of fine fuels due to a period
of heavy grazing from 1880 to 1930. Thisfinefue reduction, in conjunction with more effective
fire suppression efforts beginning in the early to mid 1900's, lengthened fire return intervasin
the Great Basin. The reduction of the role of fire has allowed woodlands to expand in areaand
increase in dendgty (Miller et d. 2000, Miller and Tausch 2001). Carbon dioxide has been
shown to increase growth rates of western juniper, even during periods of drought stress

(Knapp et d. 2001), and therefore may play arole in the recent expansion of woodlands.



Figure 2. Aerid photos from 1961 and 1993 of amid eevation portion of Underdown
Canyon, Nevada.

Undergtory species diversity and coverage are reduced as pinyon and juniper come to
dominate the affected sagebrush/grasdand communities (Bunting et d. 1999), which can result
in lossesin forage production and wildlife habitat (Miller and Tausch 2001). As pinyon and
juniper dengities increase on a site, athreshold may be crossed that can prevent reversonto a
sagebrush/grasdand dominated community following tree remova by disturbance (Miller et d.
2000). An exampleisthe increasing dengty of pinyon and juniper trees creating fue beds more
conducive to high intengity crown fires (Neary et a. 1999), after which awoodland community

may cross athreshold to an annud grass dominated community (Tausch 1999).



Managing Great Basin ecosystems properly is of great interest in order to conserve
vaues associated with this vast ecoregion. Due to dimate changes and human modification of
landscapes, ecosystems of the Great Basin will likely continue changing into the future (Neary et
a. 1999). Because fire can be the most important factor in maintaining a shrub/grass, rather
than atree, dominated community (West 1999), pinyortjuniper expansion into sagebrush
steppe is often referenced from the perspective of post-fire succession (Barney and
Frischknecht 1974, Tress and Klopatek 1987).

Fire may be used as a management tool in Great Basin ecosystems to reduce the
potentia of catastrophic wildfires in dense pinyon-juniper stands (Everett and Ward 1984,
Miller and Tausch 2001). Prescribed fire and naturdly ignited fires occurring in designated
Wildland Fire Use areas are two scenarios in which land management agencies may usefireto
effect change in ecosystems. Fire behavior and effects models can dlow land managersto
easlly compare the results of potentia fuds treetments and hypothetical weather conditions on
mock fire scenarios before encountering them on the ground. Fire behavior models are dso
used to help create prescriptions for prescribed fire and to predict the potentia spread rates and
intengities of wildfires (Brown 1982, Andrews and Queen 2001). Reasonably accurate
information on the loads and characterigtics of the fuels are necessary for effective use of fire
behavior and effects moddls (Sandberg et d. 2001). Dataon how the fuel loads and their
characteristics change over the successond gradient from sagebrush steppe to dominance by
pinyonjuniper woodland would aid in both more accuratdy portraying these fuelstypesin

models and in subsequent management decisons. Information on how the outcome of



disturbance could change as the community changes with increasing tree dominance would
provide better understanding of how post-fire rehabilitation needs would change dong this

gradient (Miller and Tausch 2001).

Objectives

Numerous studies across the Great Basin have documented the pattern of adeclinein
understory coverage as tree coverage on asiteincreases. (Blackburn and Tudler 1970, Barney
and Frischknecht 1974, Tausch and Tudler 1990, Tausch and West 1995, Bunting et a. 1999,
Poulsen et d. 1999, Miller et a. 2000). Plant species composition of the understory community
and the tota amount of vegetative cover have been shown to generdly change with eevation
(Tueller et d. 1979, Martens et d. 2001). Severd studies have used regression equations
involving shrub crown measurements to describe dl or part of the sagebrush biomass on aste
(Harniss and Murray 1976, Rittenhouse and Sneva 1977, Urek et d. 1977). However,
empirical udies correlating shrub crown measurements with the amounts of fuels by timelag
category are rare, epecidly for sagebrush communities (Brown 1982, Frandsen 1983).
Timelag categories are conventionaly defined as the time required for fudsof <%4’, ¥4’ to 1”
and 1" to 3’ diameter Sze classes, cdled 1, 10 and 100 hour fuds respectively, to equilibrate
by 63% with ambient moisture (Pyne et d. 1996). Also, few studies test regresson eguations
used to predict biomass on a subset or areserved part of the data to evaluate predictive

capabilities of the regresson eguations.



I nformation needs

The two mgor information needs on which this study focuses along with ways resultant

information could be used are outlined bel ow.

1)

Quantification of the decline of the undergtory plant community with increasing pinyon

juniper dominance

2)

Aidsin:
? Classfying potentia susceptibility to cheatgrass invason
? Predicting potential post-fire renabilitation

? Defining areas where prescribed burn trestments are desirable

Quantification of fud loads in sagebrugh steppe/pinyon-juniper
Aidsin:

? Predicting wildland fire behavior

? Predicting potentia fire effects

? Creating fire prescriptions

? Predicting smoke amounts

? Creating carbon and nitrogen budgets



The purpose of this study isto first develop regression equations that can effectively
predict the biomass and fuels by timelag classes for plant species commonly found in centrd
Nevada sagebrush communities associated with woodlands. Then, these equations will be used
to provide quantification on a plot basis of both understory plant community biomass by species
and associated fud loads.  Changes in the understory community and fuel were only compared
across three levels of both pinyontjuniper dominance and elevation. The changesin tree
dominance were only studied at the mid eevation, and the elevation effect was only studied at

the mid tree dominance level. Objectives are summarized below.

? ldentify regression equations that can effectively predict the biomass and fuels by timelag

categories for plant species commonly found in central Nevada woodlands

? Determine the understory community changes associated with increasing tree dominance or

devation

? Determine the understory fuel load changes associated with increasing tree dominance or

devation

Null Hypotheses



Lifeform comparisons

Hol: The current year’sforb, grass, and shrub biomass, do not differ between low, mid and
high tree dominance treatments.

Ho2: The current year’ sforb, grass, and shrub biomass, do not differ between low, mid and
high devation treatments.

Understory fuel comparisons

Ho3: Aerid 1, 10, and 100 hour dead fuels, do not differ between low, mid and high tree
dominance treatments.

Ho4: Totd live fuesdo not differ between low, mid and high tree dominance trestments.

Ho5: Tota downed woody fues do not differ between low, mid and high tree dominance
treatments.

Ho6: Shrub litter fuds do not differ between low, mid and high tree dominance trestments.

Ho7: Aerid 1, 10 and 100 hour dead fuels, do not differ between low, mid and high elevation
treatments.

Ho8: Totd live fuels do not differ between low, mid and high eevation treatments.
Ho9: Tota downed woody fuds do not differ between low, mid and high eevation treatments.

Ho10: Shrub litter fuels do not differ between low, mid and high devation treatments.

M ethods
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Study sitedescription

The study areaislocated in the Shashone Mountain Range on the Humbol dt-Toiyabe
Nationa Forest, Austin Ranger Didtrict, and the Battle Mountain Digtrict of the Bureau of Land
Management in central Nevada (38°10' N, 117°25' E). Study plots are located in
Underdown Canyon (Figure 3), which istypica of much of the woodland dominated aress of
the central Greet Basin. The geology is dominated by volcanic tuff and an intermittent stream
runs down the canyon. The study plots are located dong the elevation and tree dominance
gradients of the canyon on sde-vdley dluvid fans. They are dso postioned to keep
topographic conditions as uniform as possble.  Average yearly precipitation ranges from 23 cm
a lower devationsto 50 cm at higher devations, with most precipitation arriving in the winter
and spring.

Within the canyon, the woodlands are characterized primarily by singleleaf pinyon.
There are scattered Utah juniper, and occasiondly hybrids of Utah and western juniper (Terry
et d. 2000). At the lower devations, understory plant communities are dominated by Wyoming
big sagebrush (Artemisia tridentata wyomingensis Beetle & A. Young), Sandberg's
bluegrass (Poa secunda J.S. Pred) and bottlebrush squirrdtail (Elymus elymoides
[Raf.]Swezey). At higher devations Mountain big sagebrush (Artemisia tridentata vaseyana
[Rydb. Beetle]), occasiond low sagebrush (Artemisia arbuscula Nutt.) and Idaho fescue

(Festuca idahoensis Elmer) dominate the understory.
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e
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Figure 3. Topographic map of study area, Underdown Canyon, Shoshone Mountains,

Nevada.

Fied sampling

Prior to sampling, dluvid fans on the north facing dopes of the study area were dratified
into polygons representing low, mid and high tree dominance categories based on the relative
cover of tree versus understory. Macroplots were centered in polygons of each tree dominance
level a each Ste that had sufficient areato contain the plots plus a buffer zone around them.
Only the mid tree dominance polygons had adequate area for a sufficient number of macroplots
to be located a al the different devations sampled. At the two mid devation dluvid fans,

polygonsfor dl three levels of tree dominance (low, mid and high) were of a sufficient Szeto
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locate macroplots. Macroplots sampled a the mid tree dominance level were grouped into
three different devation intervals for andyss. This provided six replicate plots for each interval.
A totd of 30 macroplots were sampled over tree dominance and eevation gradients (Table 1).
Tree data were gathered in the summer of 2000 and understory data in the summer of 2001.
Some clipped plant data gathered during the summer of 2002 for post-fire effectsinformation
were used to increase sample sizes when appropriate.

Table 1. Number of replicate macroplots for each combination of tree dominance level and
elevation (ft) sampled in Underdown Canyon.

Tree dominance

Low Mid High Elevation
6 6800' - 6900
6 6 6 7200' - 7300
6 7700

Understory vegetation in each macroplot was sampled in fifty 1 x 2m subsampling
microplots located contiguoudy aong bt transects that were positioned perpendicular to the
long axis of the plot (Figure 4). The belt transects were located in a stratified random manner
aong the length of the plot and spanned the width of the plot. All shrubs rooted in the
microplots were measured by species for the longest crown diameter, the crown diameter
perpendicular to the longet, totd plant height, the crown height of live foliage and the basd
diameter (stem diameter just above ground level). The percent of dead materid comprising the
crown of each shrub was also estimated. Perennia forbs were measured for two crown
diameters and the totd height. Perennid grasses were measured for two basal diameters and

the total height. To facilitate the measuring process when herbaceous plants were small and
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abundant, grasses and forbs were sampled by speciesin each microplot by estimating their

percent cover plus ameasurement of average height. For each shrub measured as well asfor

each grass or forb where crown dimensions were measured on a transect, an individud of that

gpecies was randomly located off the end of the transect outside the macroplot and then clipped

to ground level. One subsampling microplot on each transect was randomly sdected and

clipped to obtain the biomass for the species for which the percent cover was determined. The

shrubs were separated into live and dead categories of 1, 10 and 100 hour fuels. Herbaceous

Species were a0 separated into live and dead portions prior to weighing when sufficient

amounts of dead materid were present. The samples were oven dried and weighed in the |ab.

20 X 50m plots

————————— 20m

2m

i L] -

T )4z <32°] 4519

5] 78 [9 10

20m
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Figure 4. Diagram of general macroplot layout. Subsampling microplots are depicted in the
belt transects running from Ieft to right.

I ntercepted downed woody fuels were counted along aline intercept placed on one
sde of each microplot belt transect to estimate downed woody biomass (Brown 1974). Shrub
litter mats were sampled in the summer of 2003 under 18 rabbitbrush, Chrysothamnus
viscidiflorus Hook. (Nutt.), and 36 sagebrush (a combination of Mountain big sagebrush and
Wyoming big sagebrush) plants. Shrub litter was sampled across the elevation gradient of the
study area under intergpace shrubs to avoid sampling tree litter mats. A 10 X 10 cm square
frame was placed gpproximately hafway between the slem and the outer edge of the litter mat
of each shrub in order to gather samples representative of the entire litter mat (Brown 1982).
Thelitter in each frame was collected from the Oi and Oe horizons. Full crown and litter mat
dimensions were aso taken for each shrub by measuring the longest diameter and the diameter
perpendicular to the longest. Each litter sample was floated to remove rocks, then dried and

weighed.

Analysis methods

Biomass edtimates are needed in order to assess fuels, primary productivity, nutrient
cydling, food abundance, trestment effects, competition within plant communities and effects of
different fire regimes (Murray and Jacobson 1982, Tausch and Tueller 1988, Hierro et d.
2000). Regresson analysisis the method most often used to predict the weight of both the
entire plant and selected sub-parts from crown or basal measurements and aerid cover

estimates (Tefler 1969, Ludwig et d. 1975, Brown 1976, Roussopoul os and Loomis 1979,
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Thomson et d. 1998). Many three-dimensiond shapes describing the crown volume of plants
can be caculated from crown measurements (Mawson et a. 1976, Murray and Jacobson
1982). In Stuations where plant densty and smdl size cause measuring individud plant crowns
to be too time consuming, estimates of percent cover and average height in sample plots can be
used to predict plant biomass (Alaback 1986).

In biomass prediction, log-log regresson, in the form In(y) = Ina+ b In(x), is
commonly used in cases involving non-norma error distributions (Draper and Smith 1998).
However, logarithmic equations tend to result in bias of the estimates of biomass (Baskerville
1972). Also, because the coefficient of determination (R?) is computed from the logarithmically
transformed valuesin alog-log regression, it gpplies only to the logarithmicdly transformed data,
not the origind, untransformed data (Tausch and Tudler 1988). The Ordinary Least Squares
(OLS) method of caculating regression equations has been used quite prominently (Draper and
Smith 1998), but since the advent of modern computers severd iterative methods utilizing robust
analyses, which are less sengitive to outliers and non-norma error distributions, can be
employed aswell. These robust methods work by minimizing the sum of absolute deviations, as
in Least Absolute Deviations (Gentle 1977), or by down welghting the more deviant points, as
in Andrew’s Sine or Tukey’s biweight (Press et d. 1986, Mielke and Berry 2001).

In regression andysis, the coefficient of determination (R?) measures the distance from
the data pointsto the regresson linein the Y direction in relationship to the range of the data,
giving an estimate of the precison of the equation (Hoshmand 1988). Many studies involving

biomeass estimation using regression analysis employ R as the main factor determining how well
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particular regression models predict biomass. The accuracy of the Y intercept and dope of the
regression equation are not directly quantified by RE. Also, R? should not be used to compare
regression equations using different sets of independent variables or different transformations of
response variables (Draper and Smith 1998). Methods involving cross validation hold promise
for comparing the accuracy of regression equations and therefore their predictive capabilities
(Snee 1977). Inthis study, split-sample cross vaidation analyss was used to aid in choosing

the most accurate regression models for the data.

Crossvalidation procedures

Crossvdidations of severd commonly used regression equations and methods for three species
were performed in order to choose the modds and methods yielding the most accurate biomass
predictions. The three data sets used for cross validation andlyses, Mountain big sagebrush;
rabbitbrush; and tallcup lupine, Lupinus caudatus Kdlog, had 126, 148 and 54 samples respectively.
Regresson andyses were performed using the 2001 version of NCSS datigtical software. Smple,
multiple and transformed regresson models were formulated as outlined below (Draper and Smith
1998). The dependent variable for cross validation tests was the total weight of the plant. The
independent variables used in the multiple regressons in this study were the height and the two crown
diameters, dthough severd different plant dimensions have historicaly been used with multiple
regresson analyss (Murray and Jacobson 1982, Hierro et al. 2000). The dlipsoid (see formula next
page), which has been used in one form or another in several previous studies because it best describes

the shape of many shrubs (Thomson et a. 1998, Hierro et d. 2000), was tested as the independent
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variablein the smple regressons. Power models were tested in addition to linear models because they
are often used in biomass regression analysis (Rittenhouse and Sneva 1977, Murray and Jacobson
1982, Hierro et d. 2000). Robust methods of computing regresson models as well as OLS models
with outliers removed were tested in the cross vdidation andyss to examine the predictive capabilities
of these two methods. Robust anadlyses were performed using the Least Absolute Deviations (LAD),
Tukey’ s biweight and Andrew’s Sine optionsin NCSS. Outliers were chosen and removed from the
“no outlier” models based on the characteristics of the data set as shown in scatter plots for each test.
Ellipsoid linear regression mode: w=a+hv
where: v = dlipsoid

w = totd plant weight

a, b = congtants

elipsoid = (3.14159/6)* H*C* C,

H =totd plant weight

C; = longest crown diameter
C, = crown diameter perpendicular to the longest

Power regression model: w=a\’) or In(w) = In(@) + bin(v)
where: (w, v, a and b are as defined above.)

Multiple linear regresson mode: w =a+ b(H) + c(C,) + d(Cy)
where: c,d = constants

(w, Cy4, C,, H, aand b are as defined above.)

Multiple power regression modd!: w = a(H)* ( CO* ( CY)
or In(w) =In(a) + bin(H) + cIn(C,) + dIn(Cy,)
where: (w, Cq, C,, H, a b, cand d are as defined above.)

Cross validations were done by splitting the data set into two equd parts. Regression
models were created using one st (the “modd” set) and vdidating the mode s with the second

st (the“vdidation” set). Before the slit, the data were first grouped by eevation category and
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data at the mid elevation were further grouped by tree dominance category. Datawere
assgned evenly digtributed random numbers between 0 and 1 using the Excel 2000 (version
9.0.2720) “RAND” function within each of these groupings. The datain each group were then
sorted by the random numbers. Thefirst haf of the data within each group was assigned to the
mode set and the second half to the validation set. Data were split by these trestment
groupings to insure that equa numbers of sample points from each eevation and tree dominance
treatment were included in the model and vaidation sets, as recommended by Fox (1997).
The regresson modd created from the model set was used to calculate estimated weights of
each plant in the validation set. The percent error between the sums of actual versus regression
estimated weights was used to graphically compare the various modelsin each cross vaidation
test. Two separate cross validation tests were performed. For each test the data were divided
using a unique set of random numbers.

Varidion in percent error between the first and second rounds of cross vaidation was
present for all speciestested. This variation between rounds of cross vaidation leads usto
believe that, when divided in hdf for split-sample cross vaidation, our sample sizes are too small
for the inherent variation of the species tested to use the results of only two rounds of cross
vaidation with confidence. Average percent error was below 5% for sagebrush for the dlipsoid
mode when used with the OLS method. In severa cases, (i.e., rabbitbrush < 6%) the robust
models had lower percent errors than the OLS models.  For the species tested, robust

methods sometimes improved the predictive capabilities of the regresson equation (Figure 5).



0.8

0.7 1

05

0.4 1

0.3 1

Percent error

0.2 1

0.1 4

0.0 -

EN Artemisia tridentata
mEmm Chrysothamnus viscidiflorus
1 Lupinus caudatus

Model

19

Figureb5. Error between sum of actua and predicted weights for two rounds of split-sample

cross vdidationsfor Artemisia tridentata vaseyana, Chrysothamnus viscidiflorus and
Lupinus caudatus. The Tukey’s biweight modd and the multiple, no-outlier model were not

examined for rabbitbrush or tailcup lupine.

Biomass computation and analysis

Sze-weight regresson models were created usng a custom non-linear regression

program (Tausch and Tueller 1988). Although robust models sometimes performed better than

OLS moddsin some of the cross validation cases, the OLS method was sdlected for the find
models for predicting biomass to maintain uniformity in anadysis. Also, the Sze didtribution of

many species sampled had aright skew and the robust methods of regression andysiswere
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under-emphasizing the largest plants, leading to regresson mode s that provided poor
predictions. For example, the Wyoming big sagebrush data were skewed to the right (Figure
6). Both the regression equations created with the LAD and Andrew’s Sine robust methods
for Wyoming big sagebrush were dominated by the smdler sized plants, leading to poor
estimates in the higher end of the data range for these equations (Figure 7). Thedlipsoid modd
was chosen to calculate biomass because it performed well in the cross vaidations, had uniform
results across dl species and was the smplest model.  All regression equations predict weight in

grams from variablesin cm, cn? or et

8e+hH

Get+dH 4

2et+5 4 T

Ellipsoid (cm®)

Figure 6. Boxplot of the 16-50% dead category of Wyoming big sagebrush with volume (cn)
expressed asthe dlipsoid.
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Figure 7. Scatter plot of data pointsin the 16-50% dead category of Wyoming big sagebrush
which were used to create the three sSmple power regresson models shown. The dlipsoid,
shown on the X axis was the independent variable and the total weight, shown ontheY axis,
was the dependent variable. The Ordinary Least Squares regression is shown in black, the
LAD robust regressonisin dark gray and the Andrew’ s Sine robust regression isin the lightest

gray.

Thefind equation form used was chosen based on the scatter and residud plots for
each species. When scatter plots showed no differences in the sizelweight relationships
between years, samples gathered during the summer of 2002 were added to 2001 for
combined data sets. When scatter plots of independent variables versus dependent variables
suggested a curvilinear relaionship, the power equation was used, otherwise, the linear equation
was used. Residud plotsof Y vs. DY and X vs. DY were examined to further support model
choice. Scatter plots and R? values were examined to choose between smple and multiple

regression equations for situations in which more than one independent variable was available.
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Scatter and residual plots were also used to check for outliers. When the investigation of
outliersindicated that they likely represented data recording errors, they were removed from the

data set for computation of the final regresson modd.

Grassand forb biomass predictions

Regression models were created for each grass and forb species when sample sze was
aufficient. Crown dimension measurements were used to caculate the dlipsoid crown volume
used in regression equations for the forbs and large grass species with measured crowns. In
cases where the percent cover measurement method was used, it was multiplied by microplot
areato compute an areain c’. The areaand the average height were individually used in
multiple regresson models to predict plant weights. Both the average height and the percent
cover wereindividudly plotted in scatter plots againg the plant weights. Generdly, the data sets
based on percent cover and average height had more variation than data sets of crown
measured plants. 1n some cases the relationship observed in the scatter plot between average
height and tota microplot weight was very poor. When adding average height to percent cover
in amultiple regression equation did not incresse the R, the average height variable was not
included in the find regresson equation. Severd species of grasses and forbs were measured
viathe percent cover method as well as the crown dimension method depending on the
abundance in which they were found in each plot. Regresson models for each measurement

method were used to predict weights for these species based on the method used for their
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measurement. Also, for each species measured, crown area was summed by plot and
converted to a percent cover.

Many of the less abundant species of grasses and forbs sampled in the macroplots had
too few samples avallable for regresson analyss by individua species. Generic grass and forb
regressions were created to predict the weights of species for which sample sizes were not
aufficient for angle speciesregressons. Samples from several less abundant species were
combined to create these regressons. For the grasses, a generic regression equation was
created to predict weights of less abundant species of grasses measured using the crown
measurement method. For the forbs, equations were needed for both the crown measurement
method and the percent cover method. For the crown measured forbs, large plant sze and
smdl plant Sze regresson models were created by grouping forb species by sizein order to

obtain the best fit modds from the data available.

Shrub biomass predictions

For shrubs, the dlipsoid volume used in regresson andyss was caculated from the two
diameters and totd shrub height (VOL2) and from the two crown diameters and the foliage
height (VOL1). VOL2 was generaly used to predict totd shrub weight and VOL1 to predict
foliage waight. Biomass for the various components of the shrubs was calculated by first
predicting total weight, totd live weight and foliage weight by species. Totd dead weight for

shrubs was cdculated by subtracting totd live weight from tota weight. A multiple regresson



24

mode was created to estimate the weight of the fuel components for 100 percent dead standing
shrubs based on totd height and basal diameter.

Regression equations were not used to predict every fud size category (1, 10, 100 hour
live and dead) for shrubs because sample szes were too small for predicting the larger diameter
fuds Smaller shrubs that lacked the larger diameter fuels were the most common in the plots.
Amounts of shrub fuel by sze dassesin theindividud plants were cdculated from average
percentages developed from actua fue weights of the sampled shrubs. 1t was observed in the
field that the amount of dead materid varied consderably in each live shrub. Thiswas generdly
observed to be related to the leve of tree competition. In areas of higher tree dominance, a
greater presence of shrubs with large amounts of dead material was observed. To better dedl
with this variation, samples of abundant shrub species were divided into severd categories
based on the fidd estimates of percent dead. Average percentages of fuel by sze classeswere
caculated individudly for each of the percent dead categories in order to more accurately
predict the retio of live to dead fuds aswell asthe didribution of fues among the timelag
categories. Severd variations of the percent dead categories were tested and compared based
on corrdation with the sampled plants. The distributions in the weights by fud size category
which resulted from grouping plants by the field estimated percent deed categories for fuel
weight calculation were compared with the actud breskdown of fuel weights for the same plants
grouped by actua percent dead categories.

To search for best divisons for the percent dead categories, the following methods

were used. The actua percent dead of each shrub was calculated based on theratio of live to
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dead materid weighed for the plant. Then, categorica limits hypothesized to divide mgor live
to dead ratio groups within the shrub data sets were selected based on familiarity with the data
set. Next, usng these limits, shrub data were separated into two sets of categories, one based
on field estimates of their percent dead and the other based on the actual percent dead. The
digtribution of the live and dead fuel sizes were compared between the estimated and actua
percent dead categories. Thefirst approximations for limits of the categories did not perform
well, and so severa variations on the limits were compared to find suitable category limits.
Divisons were adjusted until the live to dead ratio, and aso the digtribution of fud Szeswithin
the live and dead fuels of the field estimated percent dead categories, best matched the
corresponding actua percent dead category. The fidd estimated percent dead categories used
inthefind andyss provided the best predictors of fud sze digributions.

Amounts of dead fuels by timeag category for each plant were caculated for each
percent dead category by multiplying the tota dead weight by the average percentages of each
fuel sze determined from the measured plants. This procedure was repeeted for live fuds.
Less abundant shrubs species for which few samples were gathered were not separated into
percent dead categories for fuel estimation. Percentages of fud sze categoriesfor less
abundant shrubs were generdly predicted by grouping the entire shrub data set to calculate

average percents of each fud class.
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Shrub litter

Shrub litter weight was estimated for sagebrush and rabbitbrush species using regresson
equations based on relationships devel oped between shrub crown areaand litter mat weight.
Because shrub litter samples were taken to be representative of the entire littermat, the weight
per cnt computed for each 10 x 10 cm litter sample was multiplied by the entire shrub littermat
areasin order to derive an estimated totd littermat weight. Because it was desirable to
extrgpolate litter weights to shrubs for which we had no littermat area data, an average ratio of
littermat areato crown areawas caculated for both sagebrush and rabbitbrushdata. Crown
areawas multiplied by this multiplier and reduced to littermat areaiin order to predict littermat

weights from shrub crown areas with a regresson equation.

Treatment analysis

For andyses comparing evation and tree dominance treatments, fuel loadings were
predicted by individua for each species using the appropriate understory species biomass
equations and summed for each plot. Shrub litter was estimated for every shrub and summed
by plot whereas downed woody materiad was computed on aplot basis. For fues andyses, all
grass and forb biomass was considered dead to approximate the cured condition of the fuels
during high fire season when fire behavior prediction is most needed (Anderson 1982). Also,
onethird of the shrub leaves were consdered ephemeral, and therefore dead (Brown 1982).
For andyses comparing lifeforms, only biomass representing the current year’ s growth was

andyzed. Current year’s growth was computed as total leaf weight of shrubs, total weight of
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forbs and 86% of bunchgrasses. An average of 14% of the weight of sampled bunch grasses
was dead material, so 14% of bunchgrass biomass was consdered previous year’ s growth and
not included in the andysis. Tree foliage biomass (Tausch 2004) was the variable used to
andyze tree dominance because it most aptly describes the ecologica influence of the tree
component of the community (Tausch and Tudler 1990). Analysisof covariance and ANOVA
were performed using the gtatigtica program, Statistix 7.0, to test null hypotheses regarding the
effects of tree dominance and devation on fud loads and community compostion by lifeform

Alphaleves of 0.05 or lower were consdered sgnificant results.
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Results and Discussion

Community composition overview

Tota vegetation cover was relatively congstent across the three categories of tree
dominance (Figure 8). Trees represented only about one-third of the total vegetation cover in
the plots with low tree dominance. Understory and tree cover were approximately equa in the
mid tree dominance plots. Tota cover declined dightly in the mid tree dominance plots as
understory declined more than tree cover increased from low to mid tree dominance. Totdl
cover increased in the high tree dominance plots, with understory cover making up less than 10

percent of the total cover.
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Figure 8. Percent cover of understory, trees and total vegetation for the mid eevation plots.
Error bars represent standard deviations.
Biomass computations
Example species Idaho fescue

Because describing al the scatter and residua plots crested for the following regression
andysis results would prove redundant, the data set of the percent cover estimated |daho fescue
will serve as an example of diagnostic plot use throughout the sudy. First, box and scatter plots
were created to examine data set characteristics such as ditribution, shepe, possible model
shape, variance and influence of outliers. For the Idaho fescue data s&t, the boxplot of area

(derived from percent cover) showed aright-tailed digtribution. The boxplot for the average

height variable showed a more norma distribution (Figure 9).
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Figure 9. Boxplots of area and average height for Idaho fescue.

The relationship between area and tota weight in the scatter plot was dightly curvilinear.
This scatter plot aso showed that error increases with plant size for this data set (Figure 10).

Two potentidly influentid outliers were circled in the plot. These points were chosen for
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inspection as outliers because, at their particular locations dong the X axis, their Y vaues do not
coincide with the range of Y vaues of the rest of the data set. Before further andyss, origind
field sheets were checked for these points to identify the possibility of data entry errors causng

these outliers.
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Figure 10. Scatter plot of area versus total weight for Idaho fescue. Ouitliers are circled.

The scatter plot of average height versus totd weight showed alarge amount of
variation and very little discernable trend (Figure 11). When average height was added to the
regression equation of area predicting total weight, R? was not improved. Because average
height had alarge amount of variation and did not improve the regresson equetion, it was not

included in the regresson equation or further resdud anayses.
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After it was determined to use only the area data to predict total weight of 1daho fescue,

asgmpleregresson was run. The power form of the regression eguation was used to better fit

the curvilinear trend found in the scatter plot. After the regresson modd wasfit, the Y hat

(predicted valuesfor Y) and X vaues were plotted againg the residudlss, or the DY (DY =

Y hat-Y) vaues, to examine modd fit and the influence of outliers (Draper and Smith 1998). If

the equation form, linear or power, would have been unclear from the scatter plot(s), the linear

equation would have been fit dso, and resdud plots of power and linear equations compared.

The DY versus Y hat resdud plot shows afunnel shape, indicating heteroskedacity in the form

of increasing error (Figure 12). Although in most cases thisincreasing error would suggest a

data transformation, the data set was andyzed without transformation because log

transformations result in an increase in the bias of summed biomass estimates (Baskerville 1972,
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Lee 1982, Tausch and Tudler 1988). An iterative procedure from Tausch and Tudler (1988)
was used to fit regresson equations. However, because the assumption of normaly distributed
error is not met well, caution should be used in interpreting Statistical trestments of this
regresson equation, including F-tests (Lee 1982, Draper and Smith 1998). The DY versus

Y hat resdud plot also shows that the potentidly influentid outliers (circled) have generdly larger

resduals than other pointsin their range of the X axis.
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Figure 12. Resdua plot of Yhat versus DY for Idaho fescue. Outliers are circled.

Theresdud plot of DY versus X dso shows somewhat of afunnel shape, implying
increasing error variance to adightly lesser degree than the DY versus Y resdud plot (Figure
13). Theoutliers again have very large DY vduesfor ther location on the X axis. Thefirg
outlier (X=150, Y hat=10, DY =44.7), located above the mgjority of the data in the scatter plot,
highly influences the regresson line because it is located very near the left end of theline. This

outlier was removed because it has alarge degree of leverage and is not representative of the
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rest of the data set. The second outlier (X=800, Y hat=26, DY =-22.9), located below a
mgority of the data points in the scatter plot (Figure 10), was located more centraly dong the
X-axis. The second outlier has less leverage on the regression equation than the first outlier due
to its central position on the X-axis. However, the second outlier was a so removed, even
though it was dightly lessinfluentid than the first outlier, in order to baance removd of outliers
above and below (inthe'Y direction) the mgority of the data points. Throughout the study, fied
datawere dso consulted during outlier removal in order to extract points which were obvious

datarecording errors.
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Figure 13. Resdud plot of X versusDY for Idaho fescue. Outliers are circled.

Grassand forb biomass
The crown measurements for ten species of bunch grasses and large forbs that were

measured in the fiedld were used to compute the dlipsoid volume by speciesfor inclusionin the
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regresson equations. Data from 2002 were added to 2001 data sets to increase sample sizes
for al pecies except for Crypthantha flavocul ata Payson. Because the relationship between
the dlipsoid volume and weight varied by year, the 2002 data were not added to the C.
flavoculata data set. The most effective equations for biomass predictions varied by species
(Table 2). For afew of the forb species, the linear regression equation form was the most
effective (R°=0.61 to R* =0.99). For the remaining forb and two grass species the power
regression form was the mogt effective (R°=0.41 to R°=0.81).

Table 2. Regresson equations used to predict tota plant weight (Y) for grasses and forbs from
the dlipsoid volume (X) caculated from crown dimensions.

Species a b Equation n R’

Antennaria rosea 7.45E-02 4.76E-02 y=a(x") 24 0.64**
Arabis holboellii 1.94E-02 4.95E-03 y=a+hbx 25 0.61**
Astragalus purshii -1.08E-01  3.68E-02 y=a+bx 11 0.80**
Cryptantha flavoculata 2.54E-02 8.00E-01 y=a(x") 18 0.69**
Eriogonum elatum 1.40E-01 3.61E-01 y=a(x") 11 0.41**
Eriogonum umbellatum 1.63E+00 1.13E-03 y=a+bx 35 0.70**
Lupinus caudatus 1.41E-03 9.80E-01 y=a(x?) 85 0.81*
Lygodesmia spinosa 2.03E-01 5.06E-04 y=a+bx 19 0.99*
Achnatherum thurberianum & Stipa

comata 2.13E-01 2.66E-01 y=a(x") 16 0.62**
Festuca idahoensis 3.08E-02 7.20E-01 y=a(x") 20 0.75**

Note: All regression analyses were created using a custom non-linear program.
** indicates a P value less than 0.01.

Simple and multiple regression equations were created for fifteen species of grasses and
forbs measured in the field using the average height and percent cover method (Table 3). Data
from 2002 were added to 2001 data setsfor al species. For these, different equation forms
were found to give the best results. For four live forbs and three grasses, a multiple power

regression using both area and average height worked best (R?=0.33 to R?=0.99). One forb
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was best predicted with multiple linear regression (R?=0.62). Four grass-like species were best
predicted with a power regression using only area (R?*=0.50 to R*=0.95). The best fit
regression equations for two grass species were linear regressions with area only (R*=0.34 to
R?=0.49). The Sandberg’s bluegrass data set had the lowest R?, despite the fact that it had the
largest number of observations of dl the grasses and forbs. Because of itssmdl Sze, irregular
shape and scattered digtributions, Sandberg’ s bluegrassis particularly difficult for biomass
estimation.

Table 3. Regression equations used to predict total plant weight for grasses and forbs using
percent cover and average height.

Species a b, X1 b, Xy Equation n R?
Arenaria aculeata 1.85E-1  7.14E1  AREA 427E-1  AHT  y=a((x")(x,"®)) 44 0.47*
Eriogonum elatum -9.23E-2 1.51E-2 AREA 2.66E-1 AHT  y=a+(b;x;)+(byx,) 38 0.62*
Lupinus caudatus 152E-1  6.60E-1 AREA  3.24E1  AHT  y=a((x")(x.®)) 163 0.61*
Phlox hoodii 6.44E-2  7.75E-1 AREA  6.26E-1  AHT  y=a((x,")(x,®)) 75 0.75*
Crepis accuminata 9.68E-2 5.95E-1 AREA 1.37E-1 AHT y=a((x,"1)(x,"%)) 17  0.71*
Carex vallicola 4.76E-3 1.39E+0 AREA y=a(x") 7 0.95**
Achnatherum thurberianum
& Stipa comata 224E-2  944E-1  AREA  319E1  AHT  y=a((x,")(x,”)) 35 0.81*
Elymus elemoides 342E2 965E-1  AREA y=a(x") 128 0.50*
Festuca idahoensis 5.47E-1 5.78E-1 AREA y=a(x") 107 0.66**
Koleria machrantha 2.78E-1 5.86E-1 AREA y=a(x") 37 0.51*
Leymus cinerus 2.87E+0 3.45E-3 AREA y=a+bx 16 0.34*
Poa fendleriana 5.51E-1 1.20E-2 AREA y=a+bx 21 0.49%
Poa secunda 1.34E-1 2.64E-1 AREA 4.26E-1 AHT  y=a((x,")(x,"?)) 185 0.33*
Bromus tectorum 8.88E-3 454E-1 AREA  1.32E+0  AHT  y=a((x")(x,"®)) 14 0.99*

Note: All regression analyses were created using a custom non-linear program.
AREA = edtimated aeria coverage.

AHT = average height of aeria percent cover estimated samples.

** indicates a P value less than 0.01.

* indicates a P value less than 0.05.

Although the crown dimenson measurement method was too time consuming a

technique to use in areas with a high density of smdl plants, it produced data sets with less
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variation than the percent cover method. For example, |daho fescue was measured using both
methods. Only twenty plants were measured with the crown measurement method, producing a
regression R of 0.75, whereas the regression formed from the 107 plants measured with the
percent cover method had an R of 0.66. Some of the variation lowering R values for data sets
from the percent cover method could be due to the difficulty field data collectors had with
consggtently identifying the percent cover of sparsdy distributed plants.

Four generic regresson models were devel oped to predict the less abundant grasses
and forbs, one mode for the grasses and three models for the forbs (Table 4). These
regressions were created from species not represented in other single-speciesregresson
equations (Table 5). Datafrom 2002 were added to 2001 datafor al cases. Thelinear
models were found to fit best in dl generic regresson cases. For the generic percent cover forb
regresson and the generic grass regression, the preliminary linear modd fit had a negative
intercept. In these cases, to avoid negative weight estimates, regressons were forced through
the origin. R? for the finalized generic regressions ranged from 0.33 to 0.98.

Table 4. Regresson equations used to predict total plant weight for groups of species by
generic lifeform in Underdown Canyon.

Species a b X1 Equation n R’
generic forb (percent cover) 7.00E-02 AREA y=bx 27 (S) 0.72**
small generic forb (crown measured) 3.01E-01 2.85E-03 VOL2 y=a+bx 16 0.41*
large generic forb (crown measured) 2.41E-01 1.13E-03 VOL2 y=a+hx 9 0.98**
generic grass (crown measured) 2.75E-03 VOL2 y=bx 32 (S) 0.31**

Note: Regresson anayses were created using a custom non-linear program unless marked by
“(9)” inwhich case regressons were performed using Statistix 7.0.

VOL2 = dlipsoid volume cdculated from total height.

AREA = edtimated aeria coverage.

** indicates a P vaue less than 0.01.



* indicates a P vaue less than 0.05.

Table5. Species grouped to create generic regression equations.

Generic forb (percent cover) regression
Antennaria rosea Greene
Erigeron aphanactis Greene
Eriogonum umbellatum Torr.
Penstemon deustus Dougl.
Penstemon watsonii Gray
Lygodesmia spinosa Nultt.
Cordylanthus ramosus Nutt.

Small generic forb (crown measured) regression
Chaenactis douglasii Hook. & Arn.
Eriogonum ovalifolium Benth.

Erigeron aphanactis

Large generic forb (crown measured) regression
Castilleja linarifolia Benth.

Generic grass (crown measured) regression
Poa secunda
Poa fendleriana Vasey
Elymus elymoides
Achnatherum hymenoides (Roem. & Schult.)Barkworth

Shrub biomass

Separate regression models were developed to predict totd weight, live weight and
foliage weight for each percent dead category for each of three more abundant shrub species,
Wyoming big sagebrush, Mountain big sagebrush and rabbitbrush, to predict fuels more
accurately (Tables 6-8). Datafrom 2002 were added to the 2001 data set in all three cases.
The smple power equation was found to be the best modd in al but two cases. These

exceptions, both dead standing sagebrush, were best exhibited with multiple power regresson

37
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equations. VOL 2, the dlipsoid volume based on tota shrub height, predicted totd and live
weight better than VOL 1, which was based on foliage height. VOL 1 was a better predictor of
foliage weight than VOL 2. Individua regressons formed to predict totd and live weight for the
selected biomass components within each percent dead category had R? values between 0.56
and 0.94. R vauesfor equations predicting foliage biomass were the lowest for predicting the
foliage biomass of shrubs more than one-half dead (R?=0.31 to R=0.65). For shrubslessthan
one-half dead the prediction of foliage had R values of 0.46 to 0.87. Although R? values for
equations predicting the total dead weight of 100 percent dead plants were quite low, lying
between 0.26 and 0.60, these R? val ues were acceptable because these equations were only
used to predict a smal subset of the entire shrub population.

Table 6. Regresson equations used to predict various subsets of Artemisia tridentata vaseyana
weight (y) for various percent dead categories.

Percent
dead vy a b, X1 b, Xo Equation n R?
0-15 T 1.26E-02 8.50E-01 VOL2 y=a(xX) 53  0.83*
0-15 L 1.36E-02 835E-01 wvoOL2 y=a(xX) 53  0.81*
0-15 F  4.46E-02 5.89E-01 voL1 y=a(x) 52  0.59*
16-50 T  1.48E-01 6.58E-01 vOL2 y=a(xX) 111 0.72*
16-50 L 236E-01 5.90E-01 voOL2 y=a(xX") 111  0.70*
16-50 F 4.29-02 5.73E-01 voOL1 y=a(xX) 110 0.62**
51-99 T 1.73E+00 4.56E-01 vOL2 y=a(x) 18  0.64**
51-99 L 1.64E+00 3.62E-01 vOL2 y=a(xX) 17  0.64**
51-99 F 1.99+00 4.00E-01 voOL1 y=a(xX") 17  0.31*
100 D 7.11E-01 7.01E-01 THT 1.20E+00 BD y=a(x")(%™) 117 0.60**

Note: All regression analyses were created using a custom non-linear program.
T = tota weight.

L =live weight.

D = dead weight.

THT = totd height.

BD = Basd diameter.

VOL1 = dlipsoid volume calculated from foliage height.

VOL2 = dlipsoid volume calculated from total height.



** indicates a P value less than 0.01.
* indicates a P value less than 0.05.

Table 7. Regresson equations used to predict various subsets of Artemisia tridentata
wyomingensis weight (y) for various percent dead categories.
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Percent
dead y a b, X1 b, X Equation n R?
0-15 T 3.57E-02 8.10E-01 VOL2 y=a(X) 29 0.84*
0-15 L 2.15E-02 8.51E-01 VOL2 y=a(X) 29  0.87*
0-15 F 3.95E-02 5.84E-01 VOL1 y=a(xX) 29  0.87*
16-50 T 3.39E-04 118E+0  vOL2 y=a(X) 50  0.94**
16-50 L 4.56E-05 131E+0  vOL2 y=a(X) 50  0.94**
16-50 F 5.87E-04 9.54E-01 VOL1 y=a(X) 50  0.78*
51-99 T 4.33E-01 5.82E-01 VOL2 y=a(X) 13 0.72*
51-99 L 1.38E-01 5.95E-01 VOL2 y=a(X) 13 0.73*
51-99 F 1.33E-01 4.61E-01 VOL1 y=a(X) 13 0.35*
100 D 6.20E-01 1.66E+0 THT -3.66E-01 BD y=a(x")(x?) 18  0.44*

Note Methods and variables are as defined in Table 6.

Table 8. Regression equations used to predict various subsets of Chrysothamnus vicsidiflorus
weight (y) for various percent dead.

Percent

dead y a b X1 Equation n R®
0 L 1.81E-02 7.19E-01 VOL2 y=a(x") 104 0.56**
0 F  135E-02 638E-01  VOL2 y=a(x") 103 0.46*
1-50 T 3.18E-02 6.74E-01 VOL2 y:a(xb) 64 0.72**
1-50 L 454E-02 594E-01  VOL2 y=a(x") 64  0.63*
1-50 F  266E-02 518E-01  VOL2 y=a(x") 64  0.38%
51.99 T  4.05E-06 1.54E+00  VOL2 y=a(x") 37 093
5199 L  155E-05 1.33E+00  VOL2 y=a(x") 37 0.92%
5199 F  1.18E-03 8.18E-01  VOL2 y=a(x") 37 0.65%
100 D 532E-02 1.69E+00 THT y=a(x") 37 0.26%

Note Methods and variables are as defined in Table 6.

For estimation of fuel subparts (1, 10, 100 and 1,000 hour live and dead, with fuels

greater than 3" condtituting the 1,000 hour fuels) for the three most dbundant shrub species,

Wyoming big sagebrush, Mountain big sagebrush and rabhbitbrush, three to four categories
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based on percent dead were found to provide the best fuels estimation. The categories found to
best predict Wyoming big sagebrush fuel Size class distributions from average percentages were
0, 1to 15, 16 to 50 and 51 to 100 percent dead (Table 9). Categoriesfor Mountain big
sagebrush were 0 to 15, 16 to 50 and 51 to 100 (Table 10). Categoriesfor rabbitbrush were
0, 1 to 50 and 51 to 100, reflecting that rabbitbrush had a higher ratio of live to dead materid
(Table 11). Thedistributions of the big sagebrush species were smilar, as both had amgority
of the plantsin the 16 to 50 percent dead category. The rabbitbrush differed in that over one-
half of the plants were in the lowest percent dead category, having no discernable dead materia
(Figure 14).

Table 9. Average percentages of live and dead fud subpartsfor Artemisia tridentata
wyomingensis by field estimated percent dead category.

Live | Dead
Percentdead 1 hour 10 hour 100 hour 1,000 hour 1 hour 10 hour 100 hour
0 0.270 0.122 0.430 0 0 0 0
1to 15 0.155 0.147 0.595 0.021 0.54 0.461 0
16 to 50 0.158 0.280 0.467 0 0.559 0.328 0.113
51 to 100 0.156 0.234 0.536 0 0.405 0.387 0.209

TablelO. Average percentages of live and dead fud subpartsfor Artemisia tridentata
vaseyana by field estimated percent dead category.

Live | Dead
Percentdead 1hour 10 hour 100 hour 1000 hour 1 hour 10 hour 100 hour
0to 15 0.258 0.264 0.259 0.000 0.562 0.115 0.322
16 to 50 0.167 0.230 0.480 0 0.549 0.292 0.159
51 to 100 0.098 0.188 0.635 0 0.404 0.325 0.272

Table 11. Average percentages of live and dead fud subparts for Chrysothamnus
viscidiflorus by field estimated percent dead category.

Live | Dead
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Percent dead 1 hour 10 hour 100 hour 1 hour 10 hour

0 0.629 0.006 0 0 0
1to 50 0.583 0.129 0 0.985 0.015
51 to 100 0.478 0.236 0 0.848 0.152

Artemisia tridentata Chrysothamnus

viscidiflorus

Artemisia tridentata

wyomingensis vaseyana

Percent dead Percent dead Percent dead
categories categories categories
N 0-15 % N 0-15% I 0%
/3 16-50 % /3 16-50 % 1 1-50 %

N 51-100 %

N 51-100 %

B 51-100 %

Figure 14. Percent of plant numbers within each percent dead category by species.

Because sample sizesfor the five less abundant species of shrubs and semi shrubs were
amd| (low sagebrush; Mormon tea, Ephedra viridis Cov.; denderbush eriogonum, Eriogonum
microthecum Nutt.; prickly phlox, Leptodactylon pungens (Torr.)Nutt.; and mountain
snowberry, Symphoricarpos oreophilus A. Gray), the data sets were not divided into percent
dead categories to create regression equations to predict percentages of fuels (Table 12). Data
from 2002 were added to 2001 datafor al of these species when they were available.

Separate regression equations for foliage weight were not created for Mormon tea or the semi
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shrubs due to lack of digtinct leaves or smdl sample sizes. Weights of the very few 100 percent
dead standing low sagebrush and mountain snowberry were estimated usng Wyoming big
sagebrush regression equations. From scatter and residua plots created, the power equation
and VOL 2 were found to yield the best models for these shrubs. 1n some cases when it was
abundant, denderbush eriogonum was measured using the percent cover method. A multiple
regression equation using percent cover and average height to predict weight was used in these
stuations (Table 12). Fued sze category caculations were based on average percent aswas
done for the most abundant three shrub species. However, due to smal sample sizes, only
mountain snowberry was broken down into individua percent dead categoriesto caculate fuel
gze digributions (Table 13).

Table 12. Regression equations used to predict various subsets of plant weight (y) for various

percent dead categories for less abundant species of shrubs and semi-shrubsin Underdown
Canyon.

Species y a b, X1 b, Xs Equation n R?

Artemisia

arbuscula T 7.16E-8 2.02 VOL2 y:a(%’) 19 0.96**
Artemisia

arbuscula L 4.25E-7 1.80 VOL2 y=a(xX) 19 0.94**
Artemisia

arbuscula F 6.62E-3 6.78E-1 VOL1 y=a(xX’)) 19 0.56%*
Ephedraviridis T 1.26E-3 VOL2 y=a*x1 14  (S) 0.90**
Ephedraviridis L 1.13E-3 VOL2 y=a*x1 14  (S) 0.90**
Eriogonum

microthecum T 853E-2 4.69E-1 VOL2 y=a(X) 19 0.78**
Eriogonum

microthecum T 7.50E-2 8.79E-1 AREA 2.15E-1 AHT y=a((x1b1)(x2b2)) 26 0.71*
Leptodactylon

pungens T 1.15E-1 4.90E-1 VOL2 y:a(%’) 22 0.59**
Leptodactylon

pungens L 2.33E-1 3.75E-1 VOL2 y=a(xX) 22 0.34%*
Symphoricarpo

s oreophilus T 5.52E-3 7.99E-1 VOL2 y=a(X) 52 0.84**
Symphoricarpo

s oreophilus L 6.21E-3 7.66E-1 VOL2 y=a(>3’) 52 0.84*
Symphoricarpo

s oreophilus F 3.92E-3 6.67E-1 VOL2 y:a(%’) 52 0.73**
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Note: Regression analyses were created using a custom non-linear program unless otherwise
noted by “(S),” in which case regressions were performed using Statistix.

AREA = estimated aerial coverage.

AHT = average height of aerial percent cover estimated samples.

Other variables and methods are as defined in Table 6.

Table 13. Average percentages of live and dead fud subparts for less abundant shrub species
by field estimated percent dead category or measurement method.

Live | Dead
1 10 100 1 10
Species Foliage hour hour hour hour hour
Artemisia arbuscula r 0.185 0.325 0.396 0.499 0.551
Ephedra viridis 0.215 0.394 0.283 0.109 0.634 0.366
Eriogonum microthecum, crown measured 0.212 0.719 0 0 0.069 0
Eriogonum microthecum, percent cover 0.752 0 0 0 0
Leptodactylon pungens 0.376 0.549 0.074 0 1 0
Symphoricarpos oreophilus, 1-15% dead r 0.693 0.21 0 1 0
Symphoricarpos oreophilus, 16-99% dead r 0.678 0.16 0.019 0.94 0.06

Note: r denotes that foliage biomass was predicted from a regression equation.

Shrub litter

Because the amounts of litter under sagebrush increased with eevation, separate
regress on equations were created from plants collected above and below 7500 feet in elevation
for sagebrush. However, rabbitbrush litter samples could not be separated by eevationto
edimate litter loads due to their more limited distribution in the canyon. The higher sagebrush
litter loads in the upper devations appear to reflect the higher productivity found at these Stes as
aresult of higher precipitation and more water availability. For both sagebrush and rabbitbrush,

the littermat areawas found to average 79% of the crown area. Regression equationsfit for the
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sagebrush were dmost linear and had R? values of 0.74 and 0.75 (Table 14). There was too
much variation in the 18-sample rabbitbrush data set to create a useful regression. The median

dengty of 0.016 g/cn was used to extrapolate rabbitbrush litter to the area of each littermat.

Table 14. Regression equations used to predict sagebrush litter by elevation in Underdown
Canyon.

Elevation y a b X equaton  n R®
>7500' litter weight  3.60E-02 1.06E+00 litter area y=a(x") 27 0.74*
<7500' litter weight 1.87E-01  9.51E-01 litter area y=a(x") 9 0.75*

Note: All regression anayses were created using a custom nor+linear program.
** indicates a P value less than 0.01.

Treatment analyses
Understory community trends

The understory biomass declined as tree dominance increased (Figure 15). Understory
dominance gppeared to shift from shrubs being the most dominant, followed by forbs and then
grasses to grasses being the most dominant as tree dominance increased. Inthe ANOVA, dl
three lifeforms, grass, forb and shrub, were significantly different (P = 0.0016, <0.0001, and
<0.0001, respectively) between all three categories of tree dominance. The shrubs had the
steepest decline in biomass with increasing tree dominance, forbs decreased moderately and
grass lifeforms decreased the lesst.

The biomass of grasses and shrubs in the mid density plotsincreased significantly (P

<0.0001 and P = 0.0008, respectively) with devation (Figure 16). The dight increasein forb
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biomass was not sgnificant. However, a decrease in tree foliage biomass in the same plots with
increasing eevation gppears partly responsible for the understory increase. In the Andysis of
covariance, the significance of F vauesfor the eevation effect on each of the lifeforms
decreased when tree foliage biomass was added as a covariant, demondirating that tree
dominanceis partidly respongble for the gpparent results of eevation in the ANOVA tests
(Table 15). The ecologica reasons for higher production at the higher evationsis most likely

due to higher amounts of available weter.
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Figure 15. Understory biomass versus tree dominance for the mid eevation plots. In order to
compare between lifeforms farly, understory biomassis cdculated in this andys's as current
year' s growth which includes the biomass of forbs and smdler grasses, 86% of large bunch
grasses (to avoid including the average 14% of dead materid in large bunch grasses), and shrub
leaves. Lifeformswith the same letter among different tree dominance trestments did not
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ggnificantly differ & the a = 0.05 level according to the LSD means separation test. Error bars

represent standard deviations.
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Figure 16. Understory biomass by lifeform versus eevation for the mid tree dominance plots.

Methods are as defined in Figure 15.

Table 15. F-test and sgnificance for acomparison of ANOVA and Andysis of covariance for

the variation in the plot biomass of forbs, grasses and shrubs over the elevation classes. Tree
foliage biomass in the plotsis used as the covariant. Only mid tree dominance plots were

compared in thisanayss.

Covariance Analysis ANOVA

lifeform elevation tree elevation
Forb 0.66 0.36 1.65

Grass 8.31** 6.42* 34.46**

Shrub 1.55 5.44* 12.06**
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Note: P values are denoted as; ** = P<0.01, * = P<0.05.

Fuelstrends

At the mid eevation, understory fuels changed markedly with tree dominance. Most
understory fuel size components decreased significantly (P < 0.0001 for shrub litter, live fuels, 1,
10 and 100 hour dead fuels, and P = 0.0133 for 1 hour dead fuels) with increasing tree
dominance (Figure 17). Totd live and dead understory fuels at the mid eevation plots, not
including downed woody, averaged 6815 kg ha™* (3.04 tons ac™) in the low tree dominance
plotsto 3556 kg ha* (1.59 tons ac™) in the mid and finally to 429 kg ha* (0.19 tons ac™) in
the high tree dominance plots. The only fud subpart that did not change significantly with tree
dominance in the ANOV A was downed woody materia. Thislack of variation in downed
woody materia between tree dominance treetmentsis most likely because downed woody
materia is comprised of tree fuesaswell as shrub fuels.  As shrub-generated downed woody
fuds declined with increasing tree dominance, tree-generated downed woody fuels increased.

In the mid tree dominance plots the understory fuels generally increased with elevation
(Figure 18). The changesin shrub litter, 1, 10 and 100 hour dead fuels and totd live fues with
increasing €levation were significant (P < 0.0001, P = 0.0007, P < 0.0001, P < 0.0001 and P
< 0.0001, respectively). However, this variation could have been duein part to tree dominance
decreasing in the same plots with increasing devation. Aswith the Analysis of covariance

results for the individua lifeforms, adding tree foliage biomass as a covariant to the andysis
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reduced the sgnificance of the eevation effect, suggesting tree dominance is the dominating

factor (Table 16).
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Figure 17. Understory fuels versus tree dominance a mid elevation plots. For fuels andyses,
al grass and forb biomass was considered dead and one-third of shrub leaves were considered
ephemera and therefore dead (Brown 1982) and included in the 1 hour dead fuel category.
The remaining two-thirds of the shrub leaves are consdered live and included in the 1 hour live
fuds Fudswith the same letter among different tree dominance trestments did not significantly
differ at the a= 0.05 level according to the LSD means separation test. Error bars represent
standard deviations.
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Figure 18. Understory fuds versus evation for mid tree density plots. Methods are as

described in Figure 17.
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Table 16. F-test and sgnificance for acomparison of ANOVA and Andysis of covariance for
the variation in the plot biomass of various fuel portions over the evation classes. Treefoliage
biomassin the plotsis used as the covariant. Only mid tree dominance plots were compared in

thisandyss
Covariance Analysis ANOVA
fuel elevation tree elevation
Downed woody 0.50 0.29 0.39
Shrub litter 2.76# 3.95# 14.22**
1 hour dead 1.07 10.17** 12.15**
10 hour dead 0.20 6.83* 1.99
100 hour dead 0.05 6.27* 3.98*
Total live 0.62 5.58* 7.88**

Notes: P values are denoted as; ** = P<0.01, * = P<0.05, # = P<0.1.
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Although the understory diminishes with increasing tree dominance, tota fuel loads
increase. Totd 1 hour fuelsin the plots are strongly influenced by the levd of tree dominance
(Figure 19). The 1 hour fuelsfor the trees (Tausch 2004) gpproximately double between each
category of increasing tree dominance. Between the low and mid tree dominance categories,
thisincresse is mostly offset by the decrease in understory fuels. Theresult isthat totd 1 hour
fuels do not differ gppreciably between the low and mid tree dominance categories. A mgor

increasein totd 1 hour fuels then occurs between the mid and high tree dominance categories.
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Figure 19. 1 hour tree and understory fuels versus tree dominance for mid eevation plots.
Tree fuds depicted here are 1 hour live aerial fuds. 1 hour fudsin the understory category here
consg of live and dead understory plant data as well as shrub littermat data. Fuds with the
same letter between different tree dominance treatments did not sgnificantly differ at thea=
0.05 level according to the LSD means separation test. Error bars represent standard
devidions.

Summary
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Overdl, ample regression modes predicting understory species biomass with the crown
volume dlipsoid approach performed better than the multiple regressonsin the cross
vaidations. However, the variation between the individua results of the two cross vaidetion
tests implies that sample Szesin this study, once divided in hdf for split-sample cross vaidation,
may not be adequate to effectively use only two rounds of cross vdidation tess. Similar
methods of cross vdidation may be more useful with larger sample Szes or data containing less
variation or possbly by performing large numbers of cross vaidation test repetitions. If large
numbers of plit-sample cross validations were performed, a distribution of percent errors could
be graphed for each type of regresson model/method tested. These distributions could then be
compared and the predictive capabilities of modelmethods tested could be compared. For
this sudy, the two cross vaidation tests performed effectively represented only two pointsin an
unknown digtribution, and therefore should not be considered representative enough of the
unknown digtribution to draw definitive conclusons. In addition to the use of a distribution of
cross vdidation results, the PRESS gatigtic (Green 1983), would be a useful tool to diagnose
the predictive cgpabilities of various modds when an exceedingly large data set is not available.

Changes in the understory community compaosition and fuel |oads followed changesin
tree dominance and el evation as expected from field observations and previous research.
Understory plant biomass declined as tree dominance, as indicated by foliage biomass,
increased. Results are amilar to previous findings of understory percent cover decline with

increasing tree cover (Blackburn and Tueller 1970, Barney and Frischknecht 1974, Tausch and
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Tueller 1990, Tausch and West 1995, Bunting et al. 1999, Poulsen et d. 1999, Miller et dl.
2000). Undergory community biomass generdly increased with eevation. This probably
reflects greater water avallability a the higher devaions. However, the effects of tree
dominance generaly overpowered the effects of eevation. The understory fud load results
pardleled the community andyss results. Understory fuels decreased with increasing tree
dengty while downed woody fud, which is a compaosite of both shrub and tree ground fuels,
remained congtant. For the mid tree dominance plots, understory fuels other than downed
woody increased dightly with elevation due in part to factors discussed earlier for the understory
plant community changes. Although the understory contribution to the fuel loads decreases with

increasing tree dominance, totd fuelsincrease subgtantidly.

Results Summary:
? Forb, grass and shrub biomass as well astotal understory fuels decrease with
increasing tree dominance.
? Fuel loads of trees plus understory increase with increasing tree dominance.

? Tree dominance appearsto override effects of elevation on understory.

Conclusions
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Synthesis

The effects of fire on landscape contai ning sagebrush- steppe/pinyon-juniper woodlands
are variable and dependent upon exiting pre-fire conditions. The loss of the understory
component in pinyon-juniper woodlands can lead to poor post-fire recovery of native pecies
and Site converson to a cheatgrass dominated system. The effects of fire upon soil nutrients,
organic matter and soil fauna as well as plant community post-fire recovery, depend in part
upon the heat imparted from and the organic matter consumed by the fire, which isin turn
affected by tree dominance and its associated fudl |oads (Neary et d. 1999). In addition to
nutrient volatilization, formation of water repellant soils could occur after burnsin high
dominance stands, however this phenomenon would only effect erosion following maor
precipitation events which are rare in the Great Basin (persond communication, Ben Rau,
Department of Hydrologic Sciences, University of Nevada, Reno, Nevada 775/784-7514). As
fud loads increase in a stand, the potentid for higher fire intendties also increases. Thelack of
understory in high dominance stands coupled with the negetive post-fire effects of high fire
intengities means that large areas covered by high tree dominance may have lower revegetation
rates after fire. Also, the lack of a strong understory component after fire can leave these Stes
more open to chestgrass invasion.

Dueto the land area currently covered by pinyon and juniper, and the expected
increases in pinyon-juniper dengity and aerid coverage, the negative pogt-fire effects associated
with high dendty stands may take place over large aress of the Greet Basin in amatter of

decades. Only one-fifth of the plots sampled in Underdown Canyon were in the high tree
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dominance category, whereas over one-haf werein the mid tree dominance category. Previous
work (Tausch and West 1995) indicates that it takes about 50 years to move amid tree
dominance plot to one with high dominance. Based on this assumption, and the resultsin Figure
19, over the next 50 years the dominance of the woodlands in Underdown Canyon will increase
from about one-fifth in the high category to nearly three-fourths in the high category in 50 years.
This increase in tree dominance represents a near doubling of total woodland fudl loads on a
watershed scale. When the mid tree dominance stands reach maturity, the post-fire effects and
possible threshold trangtions of high dominance stands can be expected after wildfires. To
further exacerbate the expected maturation of woodlands, future climate scenarios modeled with
generd circulation models predict an increase in precipitation as well as temperature, which
could further enhance woodland expansion (Bachelet et d. 2001). It is hypothesized that the
role of firein reducing pinyon-juniper woodlands was subgtantia during the Post-Neoglacid
drought (Miller and Tausch 2001). Due to the influences of humans on ecologica and climate
change and the introduction of invasve species, the role wildfire may play in Great Basin
ecosystems in the coming decades may be even greater than the role it played in the Post-
Neoglacia period. However, post-wildfire effects may be undesirable given the current and

likely future states of woodlandsin the Greet Basin today.

Management implications
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Informed land management decisions are needed in the Greet Basin to maintain culturd,
ecologicd and economic vaues of the land in the face of climate change, introduction of invasive
species and the ecologica impacts of historic and current resource use. The state of woodland
expanson and potentid negative impacts of high intengty wildfiresin high dominance woodlands
creates a strong impetus to manage alarge portion of these stlands for sagebrush steppe or low
dominance woodlands in areas other than sheltered old growth stands. Because most of the
negetive post-fire effects are associated with high dominance stands, it may be beneficia to
manage low and mid dominance woodlands before they become high dominance sands. Due
to the large spatid scale of low and mid tree dominance woodlands, low-cost land management
tools will be needed to conserve the vaues associated with sagebrushsteppe and pinyor+
juniper woodlands.

Our perception of fire as aland management tool isincreasing. Fire occurrence and
management is one the most important drivers of ecologica change on public landsin the
western United States (persond communication, Neil Sugihara, Forest Service, Pacific
Southwest Region, 916/640-1054). Due to the cost and logistica requirements of prescribed
burns in mountainous terrain where pinyontjuniper woodlands are generdly found, very smdl
prescribed burnswill not likely be cost effective. Wildland Fire Use fires are another
opportunity in which fire can be used as aland management tool. Wildland Fire Use, or the
management of naturdly ignited fires to achieve resource benefits, may provide land
management agencies the opportunity to use fire as amanagement tool & relatively low codts.

Land management agencies should prioritize cregting fire prescriptions and completing
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associated planning necessary for the use of prescribed and Wildland Fire Use fires to manage
sagebrush-steppe/pinyon-juniper woodlands. Mechanica trestments of mid dominance stands
may aso be an option for treetment of mid dominance pinyonjuniper woodlands. Land
managers should aso be prepared to treat high dominance woodlands after fire if converson to
a cheatgrass dominated community is expected. Findly, care should be taken during fire or

mechanica trestments to avoid massive soil disturbance and cheatgrass seed introduction.

Resear ch needs

Refinementsin fuds estimates in sagebrushsteppe/pinyon-juniper ecosystems and their
changes with increasing tree dominance will ad in the management of wildland fire aswell asthe
prediction of landscape level fire effects patterns. More detailed studies of the tree litter and
aerid fues contributed by the trees would complement the understory fuels data presented in
thisstudy. Also, the fuds data gathered in this Sudy were mainly on dluvid fanswhich
represent the high end of the fudl load spectrum existing in the Great Basin. Information on how
fuel loads change with aspect, dope, devation and soil type would dlow for more accurate
mapping of sagebrush-steppe/pinyon-juniper fuds a larger and more useful spatia scaes.

Also, given current rates of pinyon-juniper woodland trestment, it islikdy that many mid
dominance stands will mature into high dominance stands before trestment. Further research on
trestment of high dominance sands to prevent negative pogt-fire effects would help in the
management of these stands. From the results of the prescribed burn agpplied to the area of this

sudy in May of 2002, it gppears that fire may not be the best tool to manage large, high
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dominance stands in close proximity to cheatgrass dominated areas. Mechanica thinning and

removad of some fudsfor firewood is one trestment option that may hold promise.

Literature Cited

Alaback, Paul B. 1986. Biomass regression equations for understory plantsin coastal Alaska:
Effects of gpecies and sampling design on estimates. Northwest Science 60:90-103.



58

Anderson, H. E. 1982. Aidsto determining fuel models for estimating fire behavior. USDA
Forest Service. General Technica Report INT-122. Ogden, Utah.

Andrews, P. L. and L.P. Queen. 2001. Fire modeling and information system technology.
International Journd of Wildland Fire 10:343-352.

Bachelet, D., R. P. Neilson, J. M. Lenihan and R. J. Dragpek. 2001. Climate change effects on
vegetation distribution and Carbon budget in the United States. Ecosystems 4:164-185.

Barney, M. A. and N. C. Frischknecht. 1974. Vegetation changes following fire in the pinyon
juniper type of west-central Utah. Journd of Range Management 27:91-96.

Baskerville, G. L. 1972. Use of logarithmic regression in the estimation of plant biomass.
Canadian Journa of Forestry 2:49-53.

Blackburn, W. H. and P. T. Tudler. 1970. Pinyon and juniper invason in black sagebrush
communities in eest-central Nevada. Ecology 51:841-848.

Brown, J. K. 1974. Handbook for inventorying downed woody materia. USDA Forest
Service. Genera Technica Report INT-16. Ogden, Utah.

Brown, J. K. 1976. Estimating shrub biomass from basa stem diameters. Canadian Journd of
Forest Research 6:153-158.

Brown, J. K. 1982. Fuel and fire behavior prediction in big sagebrush. USDA Forest Service.
Research Paper. INT-290. Ogden, Utah.

Bunting, S. C., J L. Kingery and E. Strand. 1999. Effects of succession on species richness of
the Western juniper woodland/sagebrush steppe mosaic. P. 76-81. In: Stephen B. Monsen
and Richard Stevens (compilers). Proceedings. Ecology and management of pinyon-juniper
communities within the interior West; 1997 Sept. 15-18; Provo, UT. USDA. For. Ser. Proc.
RMRS-P-9.

Draper, N. R. and H. Smith. 1998. Applied Regression Anaysis. 3d. ed. John Wiley & Sons

Inc. New York.

Everett, R. L. and K. Ward. 1984. Early plant succession on Pinyon+juniper controlled burns.
Northwest Science 58:57-68.



59

Fox, J. 1997. Applied regression andysis, linear models and related methods. Sage
Publications, Thousand Oaks, CA.

Frandsen, W. H. 1983. Modeling Big Sagebrush asafud. Journa of Range Management
36:596-600.

Gedney, D.R., D.L. Azuma, C.L. Bolsinger, and N. McKay. 1999. Western juniper in eastern
Oregon. USDA Forest Service Generd Technica Report NW-GTR-464.

Gentle, J. A. 1977. Least absolute values estimation: Anintroduction. Communicationsin
Statistics — Smulation and Computation B6:313-328.

Green, E. J. 1983. Evauating the predictive capabilities of regressonswith PRESS. Forest
Science. 29:712-714.

Harniss R. O. and R. B. Murray. 1976. Reducing biasin dry leaf weight estimates of Big
Sagebrush. Journd of Range Management 29(5):430-432.

Hierro, Jose L., L. C. Branch, D. Villarreal and K. L. Clark. 2000. Predictive equations for
biomass and fud characteristics of Argentine shrubs. Journd of Range Management 53:617-
621.

Hoshmand, A. R. 1988. gatistical methods for agriculturd sciences. Timber Press. Oregon.

Johnson, H. B., S. S. Mayeux Jr. and H. W. Palley. 1990. Increasing atmospheric CO,
concentrations and vegetation change on rangdands. Proc. Soc. Range Manage. 43 Annud
meeting. Reno, NV.

Knapp, P. A., P. T. Soule, H. D. Grissino-Mayer. 2001. Detecting potential regiona effects
of increased atmospheric CO, on growth rates of western juniper. Globa Change Biology
7:903-917.

Lee, C. Y. 1982. Comparison of two correction methods for the bias due to the logarithmic
transformation in the estimation of biomass. Canadian Journal of Forest Research 12:326-331.

Ludwig, J. A., J. F. Reynolds, P. D. Whitson. 1975. Size-biomass rdationships of severd
Chihuahuan desart shrubs. American Midland Naturdist 94:451-461.

Lyford, M. E., ST. Jackson, J. L. Betancourt and S. T. Gray. 2003. Influence of landscape
gructure and climate variability on alate Holocene plant migration. Ecological Monographs
73:567-583.



60

Martens, S. N., D. D. Breshears, F. J. Barnes. 2001. Development of species dominance
adong an devationd gradient: Populaion dynamics of Pinus edulis and Juniperus
monosperma. Internationa Journd of Plant Science 162:777-783.

Mawson, J. C., J. W. Ward, R. M. DeGraaf. 1976. Program HTVOL: The determination of
tree crown volume by layers. USDA Forest Service Research Paper NE 354, Upper Darby,
PA.

Mieke, P. W. J. and K. J. Berry. 2001. Permutation methods: A distance function
approach. Springer. New York.

Miller R. F. and J. A. Rose. 1999. Fire history and western juniper encroachment in sagebrush
seppe. Journd of Range Management 52:550-559.

Miller, R. F., R. Tausch and W. Waichler. 1999. Old-growth juniper and pinyon woodlands,
p. 375-384. In: Stephen B. Monsen and Richard Stevens (comps), Proc.: Ecology and
management of pinyon-juniper communities within the interior West; 1997 Sept. 15-18; Provo,
UT. USDA. Forest Service Proceedings RMRS-P-9.

Miller, R. F., T.J. Svgjcar and J. A. Rose. 2000. Impacts of western juniper on plant
community composition and structure. Journal of Range Management 53:574-585.

Miller, R. F. and R. J. Tausch. 2001. Therole of firein juniper and pinyon woodlands. a
descriptive andysis. Proceedings. The First Nationa congress on Fire, Ecology, Prevention
and Management. San Diego, CA, Nov. 27-Decl, 2000. Tadl Timbers Research Station,
Talahassee, FL. In press.

Miller, R. F. and P. E. Wigand. 1994. Holocene changesin semiarid pinyortjuniper
woodlands: Response to climate, fire, and human activitiesin the U.S. Great Basin. Bioscience
44.465-474.

Murray, R. B. and M. Q. Jacobson. 1982. An evauation of dimension analysisfor predicting
shrub biomass. Journd of Range Management 35:451-454.

Neary, D. G,, C. C. Klopatek, L. F. DeBano, P. F.Ffalliott. 1999. Fire effects on
belowground sustainability: A review and synthesis. Forest Ecology and Management 122:51-
71.

Nowak, C. L., R. S. Nowak, R. J. Tausch, P. E. Wigand. 1994. Tree and shrub dynamicsin
northwestern Great Basin woodland and shrub steppe during the Late- Pleistocene and
Holocene. American Journa of Botany 81:265-277.



61

Poulsen, C. L., S. C. Walker and R. Stevens. 1999. Soil seed banking in Pinyon-juniper areas
with differing levels of tree cover, understory density and composition. p. 141-145. In:
Stephen B. Monsen and Richard Stevens (comps), Proceedings. Ecology and management of
pinyon:juniper communities within the interior West; 1997 Sept. 15-18; Provo, UT. USDA.
Forest Service Proceedings RMRS-P-9.

Press, W. H., B. P. Hannery, S. A. Teukolsky and W. T. Vetterling. 1986. Numerica
recipes. The art of scientific computing. Cambridge University Press, Cambridge.

Pyne, SJ.,, PL. Andrews, R.D. Laven. 1996. Introduction to wildland fire. 2d ed. John Wiley
and SonsInc. New York.

Renessen, H., R. F. B. Isarin, J. Vandenberghe. 2001. Rapid climatic warming at the end of
the last glacid: new perspectives. Globa and Planetary Change 30:155-165.

Rittenhouse, L. R. and F. A. Sneva. 1977. A technique for estimating Big Sagebrush
production. Journd of Range Management 30:68-70.

Roussopoulos, P. J. and R. M. Loomis. 1979. Weights and dimensional properties of shrubs
and small trees of the Great Lakes conifer forest. USDA Forest Service North Central
Experiment Station  Research Paper 178.

Sandberg, D. V., R. D. Ottmar and G. H. Cushon. 2001. Characterizing fudlsin the 21%
Century. Internationa Journa of Wildland Fire 10:381-387.

Snee, R. D. 1977. Vdidation of regresson moddls. Methods and examples. Technometrics
19:415-428.

Swetnam, T. W., C. D. Allenand J. L. Betancourt. 1999. Applied historical ecology: Using
the past to manage for the future. Ecologica Applications 9:1189-1206.

Tausch, R. J. 1999. Trangtions and Thresholds: Influences and Implications for Management
in Finyon and Juniper Woodlands, p361-365. In: Stephen B. Monsen and Richard Stevens
(comps), Proc.: Ecology and management of pinyon:juniper communities within the interior
West; 1997 Sept. 15-18; Provo, UT. USDA. Forest Service Proceedings RMRS-P-9.

Tausch, R. J. 2004. A structurdly based mode for dlometric estimation of tree biomass from
functional volume. Forest Science. In press.

Tausch, R. J, N. E. West, A. A. Nabi. 1981. Tree dominance patternsin Great Basin
Pinyon-juniper woodlands. Journd of Range Management 34:259-264.



62

Tausch, R. J. and P. T. Tudler. 1988. Comparison of regression methods for predicting
Sngle-leaf Pinyon phytomass. Great Basin Naturdist 48:39-45.

Tausch, R. J. and P. T.Tudler. 1990. Foliage biomass and cover relationships between tree-
and shrub-dominated communitiesin pinyortjuniper woodlands. The Great Basin Naturdist
50:121-134.

Tausch, R. J. and N. EWest. 1995. Plant species composition patterns with differencesin tree
dominance on a Southwestern Utah Pinyon-juniper sSite. In: Douglas W. Shaw, Earl F. Alson
and Carol LoSapio (cords.), Desired conditions for Pinyon-juniper ecosystems, August 8-12,
1994; Hagdtaff Arizona. USDA Forest Service General Technical Report RM-258.

Tausch, R. J,, C. L. Nowak and S. A. Mensing. 2004. Climate changes and associated
vegetation dynamics during the Holocene: The paeoecologica record. pp. 24-48. In:
Chambers, Jeanne C. and J.R. Miller (eds). Great Basin Riparian Ecosystems. Ecology,
management and restoration. 1dand Press. Washington D.C.

Tdfer, E. S. 1969. Weight-diameter relationships for 22 woody species. Canadian Journd of
Botany 47:1851-1855.

Thompson, R. S. 1990. Late quaternary vegetation and climate in the Great Basin. pp. 200-
239. In: Betancourt, Julio L., T.R. Van Devender and P.S. Martin (eds.). Packrat middens:
The last 40,000 years of biotic change. Universtiy of Arizona Press, Tuscon, AZ.

Thomson, E. F., S. N. Mirzaand J. Afzal. 1998. Predicting the components of agrid biomass
of fourwing sdtbush from shrub height and volume. Journd of Range Management 51:323-
325.

Tery, R. G, R. S. Nowak and R. J. Tausch. 2000. Genetic variation in chloroplast and
nuclear ribosoma DNA in Utah juniper (Juniperus osteosperma, Cupressaceae): Evidence
for interspecific geneflow. American Journd of Botany 87: 250-258.

Tress ., J A. and J. M. Klopatek. 1987. Successiona changesin community structure of
Pinyontjuniper woodlands on North-Central Arizona. USDA Forest Service Generd Technica
Report. INT-215.

Tueller, P. T., C. D. Beeson, R. JTausch, N. E. West, K. H. Rea. 1979. Pinyon-juniper
woodlands of the Greet Basin: Didribution, flora, vegetal cover. USDA Forest Service
Research Paper INT-229.

Uresk, D. W., R. O. Gilbert and W. H. Rickard. 1977. Sampling big sagebrush for
phytomass. Journd of Range Management 30:311-314.



West, N. E. 1999. Juniper-pinyon savannas and woodlands of western North America, p.
288-308. In: R.C. Anderson, J.S. Frdish, and JM. Baskin (eds.), Savannas, barrens and
rock outcrop plant communities of North America. Cambridge Univ. Press.

63



