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Abstract

If species richness can be modelled as a function of easily quantified environmental variables, the scientific foundation for land-
use planning will be strengthened. We used Poisson regression to develop a predictive model of species richness of resident butter-
flies in the central Great Basin of western North America. Species inventory data and values for 14 environmental variables from 49
locations (canyon segments) in the Toquima Range (Nevada, USA) were used to build the model. We also included squares of the
environmental variables to accommodate potential non-linear relationships. Species richness of butterflies was a significant function
of elevation and local topographic heterogeneity, with the selected model explaining 57% of the total deviance of species richness.
Predictive variables can be derived efficiently from GIS-based data for areas in which species inventories have not yet been con-
ducted. Therefore, in addition to evaluating the ability of the model to explain observed variation in species richness, we generated
and tested predictions of species richness for ‘new’ locations that had not been used to build the model. Predictions were effective
for five new segments also located in the Toquima Range, but not for 22 new segments in the nearby Shoshone Range. We discuss

issues related to generalizability and data quality in model development.
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1. Introduction

Richness of native species is a widely used criterion
for land-use and conservation planning. Managers of
natural resources often must determine which locations
preferentially should be protected from anthropogenic
impacts, where to concentrate more intensive human
activities, and how to maintain or maximize species
diversity across the landscape. Information on species
richness across broad areas is an important considera-
tion in making these decisions (Freitag et al., 1997
Heikkinen, 1998; Tardif and DesGranges, 1998; Rick-
etts et al., 1999). Ideally, data on current species rich-
ness are obtained from comprehensive field inventories.
However, inventory data for many regions are sparse,
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and logistics and funding limit acquisition of new data
(Stohlgren et al., 1995; Faith et al., 2001a, b).
Development of predictive models of species richness
may be valuable in light of practical obstacles to con-
ducting spatially and temporally extensive inventories
and the need to weigh the potential ecological and eco-
nomic benefits and risks of management alternatives
(Oliver and Beattie, 1996; Longino and Colwell, 1997,
Niemi et al., 1997; Simberloff, 1998). If species richness
can be modelled successfully as a function of easily
quantified environmental variables, then the scientific
foundation for making land-use decisions will be
strengthened. Managers would then be able to predict
the species richness of particular locations on the basis
of the biophysical attributes of the locations. If the
attributes can be modified by human activities, then it
should be possible to anticipate the effect of different
management strategies on species richness. The capacity
to forecast potential shifts in species richness can con-
tribute to land-use planning even if key environmental
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variables cannot be managed directly (Peters and Love-
joy, 1992). For example, if species richness of certain
locations is likely to be modified by global climate
change, it may be possible to limit urbanization along
potential migration routes. The outcome of predictive
models (both species-richness values and identification
of critical environmental variables) also can help to set
priorities for locations for field inventories, monitoring
efforts, and more detailed empirical studies (Parmesan
et al., 1999).

Here, we analyse and develop forecasting methods for
species richness of butterflies in the central Great Basin
of the western United States of America. Modelling
species richness patterns in the Great Basin is valuable
for several reasons. First, more than 75% of the region
is federally owned and managed under multiple-use
mandates. Second, although managers currently are
revising land-use plans for much of the landscape, they
frequently lack even the most basic data on species dis-
tributions. And third, patterns of species richness in the
Great Basin are likely to be modified by impending cli-
mate change (McDonald and Brown, 1992; Murphy
and Weiss, 1992; Fleishman et al., 1998). We chose to
focus on butterflies because they are well understood
biologically, fairly easy to study and monitor, have
relatively short generation times (thus may exhibit rapid
responses to management), and often have been sug-
gested as surrogate measures of overall species richness
or ecosystem attributes (e.g. Ehrlich and Davidson,
1960; Scott, 1986; New, 1991; Kremen, 1992; Pre-
ndergast et al., 1993; Holl, 1995; Blair and Launer,
1997).

Species richness potentially can be explained as a
function of several distinct suites of environmental
variables. The first suite includes location-specific vari-
ables related to the resource requirements of the focal
species, such as basal area coverage of woody vegeta-
tion. This set of variables frequently yields successful
results (Hanski and Gilpin, 1997), but obtaining the
necessary data can present logistic obstacles akin to
those encountered in species inventories. A second
approach employs variables that can be quantified over
large spatial scales from topographic models. A key
advantage to this technique is that the variables can be
derived efficiently and potentially cheaply, generally
from remotely sensed data and geographic information
systems (GIS) (Caicco et al., 1995; Edwards et al.,
1995). We believe that if this second approach proves
successful, even for the single system upon which it is
based, then the advantages for land-use planning may
be considerable.

Predictive models for the distributions of species given
information on current or past occurrence have been
developed in the past few decades, especially with the
advent of modern computers. For example, BIOCLIM
(Busby, 1991) has been used to model the distributions

of many kinds of organisms in the southern hemisphere,
including vertebrates, invertebrates, vascular plants, and
fungi (Randolph, 1993; Wardell-Johnson and Roberts,
1993; Brereton et al., 1995; James and Bell, 1995; Mar-
tin, 1996; Tyler et al., 1996; Neave and Norton, 1998;
Eeley et al., 1999; Jackson and Claridge, 1999). The
BIOCLIM model also has been used retrospectively in a
paleogeographic context (e.g. D’Costa and Kershaw,
1997; Kershaw, 1997). Like BIOCLIM, most predictive
models are based on extensive biogeographic domains
with pronounced climatic variation. Because our study
included just one dominant biogeographic domain
(central Great Basin), there was little grounds for dif-
ferentiation of locations on a broad climatic basis.
Therefore, we chose to employ methods more intimately
connected with the topography of the mountain ranges
from which the data were collected.

In this paper, we present an approach to explaining
and predicting the species richness of butterflies. Ordin-
ary multiple linear regression is not ideal for modelling
richness data because the error distribution of richness
data is expected to be Poisson rather than Gaussian
(normal) (Cameron and Trivedi, 1998). Because one of
our goals was to identify explanatory and predictive
models with methods that are more effective than mul-
tiple linear regression (Mac Nally, 2000), we first used
Schwarz’s information criterion (SIC, Schwarz, 1978) to
locate the probable best model. We then used derived
models within the context of Bayesian modelling to
predict the species richness of locations that had not
been used to build the models. The latter locations were
inventoried during the 2000 field season, and the new
data were used to test the predictions. Aspects of the
derived model were used as components of distribu-
tional priors for the new data sets (see Lee, 1989). We
tested species richness predictions for (1) locations in
Toquima Range that had not been inventoried pre-
viously and (2) locations in the nearby Shoshone Range,
a range in which virtually no butterfly inventories had
been conducted.

We reiterate that confidence in model predictive
capacity involves the development of models that pro-
duce testable predictions, i.e. predictions for locations
for which no information on the dependent variable—
species richness—currently exists (see Mac Nally and
Bennett, 1997, Mac Nally et al., 2000). Therefore, we
see predictive modelling as a process that requires
separation of the building and testing phases. If tests of
the model are successful, then the model may be used
with confidence. Otherwise, the modelling process
involves, in decreasing order of severity, either (1) com-
plete abandonment of the initial model, which indicates
that the modelling methodology may not be appropriate
irrespective of the set of variables that is available for
use; (2) refinement of model structure, which implies a
major revision of the model, perhaps using a different



R. Mac Nally et al. | Biological Conservation 110 (2003) 21-31 23

suite of variables and/or functions thereof; or (3)
refinement of model parameters, which means that the
initial set of variables and/or interactions seem justified,
but the values of model coefficients were inadequate (i.e.
too large or small).

2. Field methods

The Great Basin of western North America includes
nearly 430,000 km? of internal drainage bounded by the
Sierra Nevada and southern Cascades to the west, the
Wasatch Range to the east, the Columbia River to the
north, and the Colorado River to the south (Grayson,
1993). Topographically, the Great Basin is dominated
by more than 200 mountain ranges. After the Pleisto-
cene, these ranges were isolated from the surrounding
valleys as the regional climate became warmer and drier
(Brown, 1978; Grayson, 1993). Individual mountain
ranges, and the canyons that deeply incise many of
them, seem to function as discrete islands of habitat for
numerous taxa that either are restricted to montane
ecotypes or have relatively low mobility, including but-
terflies (McDonald and Brown, 1992; Murphy and
Weiss, 1992). The US Forest Service, which oversees
many of the largest and most biologically diverse
mountain ranges in the Great Basin, generally develops
management plans for individual mountain ranges, and
solicits biological data to guide these plans. Within
mountain ranges, land uses commonly are delineated at
the level of individual or several adjacent canyons. The
spatial resolution of our field inventories and analyses
therefore was appropriate for the ecology and political
realities of our study system.

In 1996 and 1997, we conducted comprehensive
inventories of butterflies, using standard methods (Sha-
piro, 1975; Thomas and Mallorie, 1985; Swengel, 1990;
Kremen, 1992; Pollard and Yates, 1993; Harding et al.,
1995), in 10 canyons in the Toquima Range (Lander
and Nye counties, Nevada), a 1750 km? mountain range
in the central Great Basin. We divided canyons into
multiple segments (three to six per canyon), each
extending for approximately 100 m in elevation, from
base to crest. We inventoried a total of 49 segments,
covering an elevational gradient from 1872 to 2750 m.
Because the timing and duration of flight varies among
butterfly species, locations, and years, we inventoried
each canyon approximately every 2 weeks throughout
the majority of the flight season. During every canyon
visit, we walked the length of each segment at a constant
pace (thus, sampling effort was equal per unit area), and
recorded the presence of all butterfly species seen. These
standard techniques for surveying butterfly assemblages
reliably detect species presence and permit assessment of
distributional trends across space and time (e.g. Pollard
and Yates, 1993; Harding et al., 1995). Fifty-six resident

species (taxa that complete their entire life cycle in the
Toquima Range, Fleishman et al., 1997, 1999) were
recorded in our inventories. Given the average length of
our canyon segments (> 1.2 km) and the low vagility of
most butterflies in our study system (rarely more than
several hundred m), it is reasonable to assume that our
measurements of butterfly species richness are spatially
independent (Fleishman et al., 2000).

It is unlikely that we failed to detect species that
actually were present in a given location, at least during
the years in which we conducted inventories. Field per-
sonnel were very familiar with the regional butterfly
fauna, and we restricted our inventories to times when
the weather was most favourable for flight. It is reason-
able to interpret that a given butterfly species is absent if
the area has been searched with these methods during
the appropriate season and weather conditions (Pullin,
1995; Reed, 1996). Using these methods in the nearby
Toiyabe Range, for example, we recorded 98% of the
theoretical total number of resident species expected in
the mountain range under a Michaelis—Menten model
(Clench, 1979; Raguso and Llorente-Bousquets, 1990;
Soberon and Llorente, 1993). Field methods are descri-
bed in more detail in Fleishman et al. (1998, 1999).
Canyon segments were delineated by overlaying differ-
entially corrected global positioning system locations on
a 30 m (1:24,000) Digital Elevation Model (DEM)
maintained on a Geographic Information System. Sam-
pled area was 50 m on all sides (left, right, and over-
head) of the inventory route (generally a hiking trail,
recreational access road, or historic mining road).

Fourteen environmental variables were measured for
each canyon segment (Table 1). Most were derived from
existing electronic sources of data such as DEMs and
digital line graphs (DLGs) in combination with Arc-
View and Arc Macro Language scripts. DEMs and
DLGs are available at no charge from the US Geologi-
cal Survey’s EROS Data Centre, http://edc.usgs.gov/
doc/edchome/ndcdb/ndedb.html. We also used the
squares of the environmental variables because there
may be non-monotonic responses (e.g. declines in spe-
cies richness at extremes of a variable). Values for
environmental variables included in this study also can
be obtained for locations that have not yet been inven-
toried. Therefore, we could make predictions for ‘new’
canyon segments based on the model, and then inven-
tory the canyon segments to test the efficacy of the
model.

3. Model-building and model-testing

3.1. Model variable selection

We fitted species-richness (the dependent variable,
DV) by using Poisson regression because non-negative
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variables are best modeled using a Poisson-error dis-
tribution (Crawley, 1993). With many independent
variables (IVs; e.g. 14 in the current study and their
squares =28 in total), many of the ‘screening’ approa-
ches to identify the most promising set of variables to
retain are suspect for statistical reasons (e.g. stepwise
methods, naive screening; Mac Nally, 2000). Mac Nally
(2000) recommended using Schwarz’s information cri-
terion (Schwarz, 1978) to identify the most efficient
model, at least initially. Every possible model involving
main IVs and their squares (22®=268,435,456 here,
excluding interactions) in the hierarchy is calculated and
SIC for each is computed—the minimum SIC is sought.
SIC is an ‘optimal’ statistic, a compromise between
model ‘fit” (ability to explain observed variation in the
DV) and model complexity (number of IVs). We
screened only non-interaction models for tractability—
there are 0(2>™) models including all hierarchical com-
binations of the 28 IVs, their squares and interactions,
so one could not possibly process all models up to and
including the 28-way interaction. Moreover, it seems
unwarranted to search for the best candidate model
consisting of just main effects and then, having found
this, to begin including interaction terms. We believe
that use of hierarchical partitioning (see later) at least
partially addresses the interaction problem.
Automating such exhaustive searching is straightfor-
ward when multiple linear regression (MR) is used
because MR involves matrix calculations. Most other
fitting methods including multiple Poisson modelling
(PR, for ‘counts’ DVs, such as species richness) use

iterative methods (e.g. Newton—Raphson), which are
difficult to automate for PR. Therefore, we initially used
ordinary MR even though the DV is not normally dis-
tributed. However, a useful adjunct in this regard is to
use log,(1+richness) because the logarithm is the
appropriate link function for Poisson-distributed DVs
in generalized linear modelling (McCullagh and Nelder,
1989).

All 222 MR models were calculated by using software
written by RM based on matrix calculations (Huang,
1970, §4.1.4). The minimum SIC values were found for
each level of model complexity. We then investigated
models based on variables included in that minimum-
SIC model. For example, a minimum often occurs with
the inclusion of a variable that accounts for minor var-
iation that might be considered ‘noise’ in the model-
building data-set. Thus, it is critical to evaluate more
fully the variables associated with the minimum-SIC
models in relation to the amounts of variance they
‘explain’.

Model fit in Poisson regression is measured by using
the deviance, and differences between the deviances of
any two models are distributed approximately as a y?
with the difference in the number of IVs used as degrees-
of-freedom (d.f.). The residual deviance should be
approximately the same as the residual d.f. if the data
are adequately modelled by a Poisson DV (Crawley,
1993, § 14.9.1). We used the program GLMStat (Beath,
2000) for calculating the maximume-likelihood estimates.

We also used hierarchical partitioning for establishing
which of the variables have the most ‘independent’

Table 1

Environmental variables used for Poisson modelling of the species richness of butterflies in the Toquima Range (Lander and Nye counties, Nevada,

USA)

Code mean SD min. max. Definition

EASTX 33 51.3 -74.9 85.1 mean ‘eastness’ on a scale from —100 (west-facing) to 100 (east-facing)

NORX 16.8 359 —56.7 79.5 mean ‘northness’ on a scale from —100 (south-facing) to 100 (north-facing)

ELEVX 2369 182 1921 2707 mean elevation in m

SLOPEX 10.5 3.7 3.7 19.6 mean slope in degrees

LENGTH 1736 927 441 4441 segment length in m

PRECIP 423 74 283 612 mean annual precipitation in mm for the 4x4 km cell in which the canyon
segment falls, or weighted mean of the cells in which the canyon segment
falls (derived from PRISM, Daly et al., 1994)

EQINX 14970 1273 11290 17586 mean solar insolation in kJ at the vernal equinox

EQINS 1718 770 346 3631 standard deviation of solar insolation in kJ at the vernal equinox

EX300X -17.3 11.1 —38.7 9.2 mean topographic exposure within a 300 m radius. Compares the elevation
of the canyon segment with the mean elevation of a specified neighbourhood
around that segment. If the segment is in a valley, value <mean; if on a ridge,
value > mean; if on an open slope, value =mean, slope # 0; if flat, value =mean,
slope=0

EX300S 8.9 5.2 1.7 259 standard deviation of topographic exposure within a 300 m radius

EX150X —6.2 4.2 —14.3 39 mean topographic exposure within a 150 m radius

EX150S 5.0 2.3 1.9 11.6 standard deviation of topographic exposure within a 150 m radius

H,O0X 401 187 34 500 mean distance in m from the centre of the canyon segment to running or
standing water; maximum set at 500

H,0OM 319 229 0 500 minimum distance to running or standing water

SD, standard deviation; min., minimum; max., maximum
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explanatory power (see Chevan and Sutherland, 1991;
Mac Nally, 2000), i.e. those that independently account
for the most variance in the DV. As with conventional
multiple linear regression, multiple Poisson regression
can be adversely influenced by collinearity among inde-
pendent variables (Chevan and Sutherland, 1991).
Hierarchical partitioning is a arithmetico-statistical
method that estimates the amount of variation in the
dependent variable explained by each independent vari-
able (e.g. I, without the problems inherent in multiple
regression (Chevan and Sutherland, 1991). Variation
attributable to the joint influence of two or more inde-
pendent variables is distinguished from variable-specific
explained variance (Chevan and Sutherland, 1991), so
that one can isolate those IVs most likely having the
strongest independent influence on the dependent vari-
able.

3.2. Modelling process

The process used for Bayesian modelling of species
richness involves model-building and model-testing
phases.

3.2.1. Model-building phase

1. All IVs are standardized X, = (Xy — Xx)/sk,
where the means (X) and standard deviations (s) of
variable k are used for each site i. IV standardization
was undertaken to reduce potential correlation
among model parameters, which may significantly
affect model convergence (see Spielgelhalter et al.,
1996).

2. The Poisson-regression model is specified by using
the BUGS programming framework (see Spielgelhal-
ter et al., 1996). This amounts to the following for-
mat:

g

log(pi) = a0 + ZakX,'k +e&;
k=1

Y; ~ Poisson (u;).

The as are the usual regression coefficients, u; is the
(unobservable true) mean species-richness at site i
given the state of the IVs, ¢ is model error, and Y, is
the observed species richness, which is assumed to be
distributed (‘~’) as a Poisson variable with mean u;.
The as are initially given ‘non-informative’ normal
priors [o ~ Normal(,u =0,0>= 300)] which indi-
cates that initially their values are unknown.

3. Markov Chain-Monte Carlo (MCMC) involves
repeatedly ‘sampling’ from distributions specified in a
model (see Gilks et al., 1995). Because this is an
iterative procedure, initial values of the parameters

need to be specified. Depending on model complexity
and data quantity, it may take 300-1000 iterations
before the parameter estimates have ‘settled down’
(the ‘burn-in’), after which parameter distributions
are built for another 2000-10,000 iterations. In the
current analyses, the burn-in was 1000 iterations and
sampling 3000 iterations.

4. The distribution of u-values gives a posterior
probability distribution of species-richness values for
each segment given the values of the IVs. A 95%
credible interval for the fitted values for p can be
derived from the posterior distribution. A credible
interval refers to the interval in which the given frac-
tion of posterior probability falls.

3.2.2. Model-testing phase

5. Values for the set of I'Vs from sites for which pre-
dictions are to be made (‘new sites’) are standardized by
using the means and standard deviations from step 1.
The data for the testing phase should be a subset of
values used in the model-building phase for each
retained IV. In other words, no values outside the
minima and maxima of the data used in the model-
building phase are employed in the testing phase.

6. The Bayesian model with regression-coefficient
distributions is used in conjunction with the standar-
dized data from the new sites to generate u-value
distributions.

7. Step 6 produces ‘updated’ estimates for model
parameters: the posterior distributions from the
model-building phase become the new prior distribu-
tions for future modelling (Lee, 1989, p. 35).

3.3. Model-testing data

During the 2000 field season, we conducted inven-
tories of butterflies in five new canyon segments in a
new canyon in the Toquima Range and 22 new canyon
segments in the Shoshone Range. The 1600 km? Shosh-
one Range lies roughly 40 km west of the Toquima
Range. The two ranges have similar climate, a common
biogeographic past and ancestral biota, and comparable
management histories. Butterfly species composition of
the two ranges appears to be largely the same (see Sec-
tion 5). The new Toquima Range segments were used to
assess whether a model developed from information for a
particular mountain range was applicable to other seg-
ments in the same range. The validation inventories in the
Shoshone Range were conducted to determine whether
the model was effective for other geographically prox-
imate and ecologically similar mountain ranges. Methods
for species inventories and derivation of independent
variables (ELEVX and EX150S) were the same as those
described for the initial (model-building) inventories.
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Values of the independent variables for the new seg-
ments were compared with the minima and maxima for
previously inventoried segments. None of the new seg-
ments had values outside the latter bounds. Therefore,
all of the new segments were retained.

To test conformance between predictions and observa-
tions, we asked whether the observed values fell within
the 95% credible intervals of the predictive distributions
derived from the Bayesian modelling (see Lee, 1989).

4. Results
4.1. Model-building phase

The SIC minimum [MR based on log(richness + 1)]
was —115.7 for five variables: ELEVX, ELEVXZ,
LENGTH, EX300X? and EX150S. We computed all
23=132 models in the hierarchy based on these five vari-
ables, the deviances from which were then used in a
hierarchical partition. It was clear that three of the
variables (ELEVX, ELEVX? and EX150S) had sub-
stantially greater potential explanatory power than
LENGTH and EX300X?. The reduction in deviance
(effectively a measure of goodness-of-fit; Cameron and
Trivedi, 1998) of the five-variable model was 82.18
(126.50 for the null model, 44.32 for the five-variable
model). ELEVX (30.3%), EXI150S (27.8%) and
ELEVX? (24.4%) accounted for the lion’s share of the
reduction. LENGTH contributed virtually nothing
(6%), but EX300X? (11%) was problematic. The
deviance of a four-variable model (i.e. excluding
LENGTH) was 55.22 (44 d.f.), while the deviance of a
model also excluding EX300X? was 59.93 (45 d.f.). The
percentage improvement was 4.71/55.22=8.5%, and the
four-variable model was statistically better (differences
in deviances=4.71, 0.05<P <0.025, %, 1 d.f.). How-
ever, we judged that the improvement associated with
including EX300X? was marginal; moreover its regres-
sion-parameter estimate was not statistically significant
(t 1.9, P>0.06). Given that our goal was predictive
capacity, we concluded that the three-variable model
was more likely to be generally applicable.

Regression-parameter estimates and their standard
errors from both maximum-likelihood and Bayesian
(BUGS) calculations are listed in Table 2. The estimates
are in reasonable agreement, although the Bayes esti-
mates slightly downplay the influence of ELEVX. Mean
fitted values and 95% credible intervals of the posterior
probability distribution are shown plotted against
observed values in Fig. la.

4.2. Model-testing phase

Relatively few (12) of the observed values fell within
the 95% credible intervals of the predictive distributions

for segments surveyed in 2000 (Fig. 1b). However,
four of the five Toquima segments fell within the
intervals and the other Toquima segment was only
just above the 97.5% credible value (Fig. 1b), sug-
gesting that the fitting for new segments in the same
mountain range as those from which the model was
constructed was good. Values for the Shoshone Range
generally fell above the estimates. We also modelled the
Shoshone segments alone (N=22) with regression
parameter priors having the means from Table 2 but
with imprecise variances (100). BUGS modelling pro-
duced parameter estimates in which the ELEVX and
EX150S terms were no longer statistically different
from zero; parameter estimates for the retained terms
were constant=3.049 (0.072 SE), ELEVX?=—0.096
(0.044 SE). The effect of this modelling was to shift the
credible intervals upwards compared with Fig. 1b, but
only 11 of the observed richness values fell within the
intervals.

5. Discussion
5.1. The Toquima Range model

We obtained an initial statistically significant model
for the species richness of butterflies on the basis of lin-
ear and/or quadratic forms of just two environmental
variables that are easy to quantify across virtually any
landscape. Our validation results suggest that the pre-
dictions may hold well for the same mountain range for
which the initial model was built (i.e. the Toquima
Range), but not necessarily for other mountain ranges
(e.g. the Shoshone Range).

Regression models are based upon correlations, and
thus do not necessarily identify causes of ecological
patterns. Nonetheless, they are useful for planning pur-
poses because they link landscape variables with species
distributions and do not require field data from inten-
sive surveys, such as vegetation quadrats (Opdam,
1997). Moreover, we believe we can draw ecological
inferences for why elevation and topographic hetero-
geneity (EX150S) explained significant variance in spe-
cies richness.

Table 2

Model-building phase parameter values (and standard errors) for
Poisson-regression models (maximum-likelihood and Bayesian esti-
mates) for all resident species of butterflies in 49 canyon segments in
the Toquima Range (Lander and Nye counties, Nevada, USA)

Variable MLE (SE) Bayes (SE)

constant 2.958 (0.047) 2.954 (0.043)
ELEVX 0.180 (0.046) 0.168 (0.044)
EX150S 0.148 (0.037) 0.155 (0.035)
ELEVX? —0.154 (0.037) —0.162 (0.034)




R. Mac Nally et al. | Biological Conservation 110 (2003) 21-31 27

Elevational gradients affect the distributions of
numerous taxa, including butterflies, in diverse geo-
graphic regions (e.g. Merriam, 1890; Terborgh, 1977,
Baz, 1987; Kremen, 1994; Fernandez-Palacios and de
Nicolas, 1995; Sanchez-Rodriguez and Baz, 1995; Lie-
berman et al., 1996; Shapiro, 1996; Fleishman et al.,
1998, 2000). Elevation is likely to be correlated with
species richness of butterflies in mountain ranges
throughout the Great Basin, although the functional
relationship may vary (Fleishman et al., 2000). In the
Toquima Range, species richness and elevation are
positively correlated—species richness tends to increase
as elevation increases although the negative coefficient
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Fig. 1. (a) Mean predicted (with 95% credible intervals) versus
observed species richness of all resident species for the 49 segments
involved in the model-building phase. (b) Observed species richnesses
in relation to 95% credible intervals of the predictive distribution for
the 27 segments of the model-validation phase; values are arranged in
increasing order of predicted species richness. Open squares are
Toquima Range segments and filled circles are Shoshone Mountains
segments.

associated with the ELEVX? (Table 2) term indicates a
flattening of the curve at lowest and highest elevations.
In many mountain ranges, environmental conditions at
higher elevations (e.g. increases in cloud cover, pre-
cipitation, and wind speed and decreases in ambient
temperature) tend to be less conducive to flight. As a
result, fecundity often decreases, and risk of local
extinction increases, at higher elevations (Kingsolver,
1983, 1989; Springer and Boggs, 1986; Dennis and
Shreeve, 1989; Dennis, 1993; Boggs and Murphy, 1997).
In the Toquima Range, climatic severity appears to
decrease as elevation increases. This may reflect a range-
specific gradient in climatic severity (Fleishman et al.,
2000). Low elevations in the Toquima Range are arid
and floristically depauperate. As a result, larval host-
plants, adult nectar sources, and some potential loca-
tions for seeking mates are scarce (Scott, 1975, 1986).
Because much of the Toquima crest is not extremely
high (~2700 m), conditions at upper elevations are not
extremely harsh, and thus climate may constrain species
richness less at high elevations than at low elevations.

Species richness of butterflies in the Toquima Range
also increases with increasing topographic hetero-
geneity. Varied topography probably supports a corre-
spondingly diverse plant community in terms of both
composition and structure. In addition, topographic
heterogeneity affords numerous locations for seeking
mates and may provide shelter from extreme weather
events (Scott, 1975, 1986). While our dependent variable
may be sensitive to the spatial scale of our inventories,
we believe that the relationship between species richness
and the significant independent variables is robust.

The model appeared to predict well the richness of
five segments not previously inventoried in the Toquima
Range. Model accuracy might be improved further if
information on several additional variables that are
known to affect butterfly distributions, including local
weather and vegetation, could be included in the model-
building phase. Currently, data on those variables do
not exist for our study area (or for many other remote
ecoregions), especially not at the appropriate spatial
and temporal resolution. However, the Earth Observing
System’s Terra satellite and particularly the MODIS
(moderate resolution spectroradiometer) instrument will
soon provide high-resolution data on relevant variables
including timing of snowmelt, plant phenology, and
primary productivity (see http://eostc.umt.edu/). We
anticipate incorporating such new variables into the
future model revisions.

5.2. The Shoshone Mountains and the efficacy of models

The three-term model developed by using data for the
Toquima Range did not apply well to the 22 segments
surveyed in 2000 in the Shoshone Range. There are
several possible reasons why such a result emerged.
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First, the different geographic positions of the two ran-
ges may invoke different agents in the determination of
species richness. The Toquima and Shoshone ranges
have fairly similar area and relief; in fact the Shoshone
is slightly smaller and shorter, and has less vegetational
diversity. However, the Shoshone and Toquima ranges
lie on either side of the Toiyabe Range, which is con-
siderably taller (40% of its crest exceeds 3000 m) and
more extensive (3100 km?) than the Shoshone and
Toquima ranges. The Great Basin, within which all
three ranges are situated, is a ‘cold desert’, which means
that most precipitation comes from winter snowfall, and
winter storms tend to follow an eastward trajectory
(Grayson, 1993). Thus, the Toiyabe Range may create a
rain-shadow effect, intercepting precipitation before it
reaches the Toquima Range. As noted earlier, eleva-
tional gradients in species richness in the Toquima
Range largely may be associated with a moisture gra-
dient; if water is less limiting in the Shoshone Range,
factors other than elevation may be more influential.
Another possible reason why the Toquima model did
not apply well to the Shoshone Range is that annual
variation in species richness of butterflies is high, even at
one location (Pollard, 1988, 1991; Shapiro, 1996). Esti-
mates of species richness for a single year may be more
variable than the total richness observed in the field
over several years. Thus, one year ‘snap-shots’ of seg-
ments may be major impediments for both building and
validating models. In our first year of inventories in the
Shoshone Range, we recorded 48 of the 56 species of
resident butterflies present in the Toquima Range. Most
of the other eight species are relatively rare in the cen-
tral Great Basin, and probably will be recorded from
the Shoshone Range in future years. Nonetheless, we
note that the maximum species richness of any segment
in the Shoshone Range (31) was only slightly less than
the maximum one year species richness of any Toquima
Range segment [33 (1996) or 36 (1997)]. Thus, differ-
ences in total species richness should not prevent us
from evaluating the predictive ability of the model, at
least on a preliminary basis. On the basis of our experi-
ence, we think that complete characterization of the
butterfly faunas for individual segments probably
requires at least 3 years, and that it will be upon such
high-quality data that the best models will be con-
structed. Similarly, validation data based on equally
high-quality data is likely to provide the best and most
stringent tests of modelling based on mesoscale habitat
variables. A reasonable objective is to maximize the
number of locations (sample size) used to build and
validate models without sacrificing data quality (i.e.
recording all species present). In our study system, there
is no direct trade-off between sample size and inventory
intensity. Each location must be visited at regular inter-
vals (within years) to accommodate interspecific differ-
ences in flight phenology, and sampling effort is

proportional to area. Our ability to increase sample size
instead depends upon accessibility of new locations and
personnel.

6. Conclusions

No single tool or method is appropriate for all man-
agement challenges (Andelman and Fagan, 2000). The
objectives of biodiversity management at the regional
level may include maintenance of native species diver-
sity, preservation of rare species, eradication of exotic
species, and tracking effects of ecological changes on
biological communities. Thus, the process of prioritizing
locations for a suite of potential uses is an optimization
of a range of considerations. We recognize that analyses
of species richness address neither the requirements of
individual species of management interest, probabilities
of species persistence nor species composition per se.
While we have addressed only species richness here, we
have shown that a function of the three variables used
here is very effective at explaining patterns of biotic
nestedness in these butterfly faunas (Fleishman and
Mac Nally, 2002), suggesting that not only richness but
elements of composition are dependent on these topo-
graphic variables.

Environmental variables that influence species rich-
ness may have little effect on the distribution of a parti-
cular species of concern (Cody, 1986; Thomas, 1995;
Fagan and Kareiva, 1997; Freitag et al., 1997), and even
locations with relatively low species diversity may serve
as key supports for populations in species-rich areas. In
addition, management of individual species often relies
more heavily upon location- or species-specific data
than upon more general and temporally static variables
measured over large spatial extents. Ideally, models of
both species richness and species occurrence should be
developed. In related work, we have used Bayesian
logistic modelling to develop predictive models of indi-
vidual-species occurrence for resident butterflies in the
same study system (Fleishman et al., 2001, in press).
Using the same environmental variables, we have
obtained statistically significant models for 36 species,
over half of which include mean elevation.

It is important to develop a range of complementary
modelling approaches that can be employed for differ-
ent purposes than to seek a single panacea for manage-
ment planning. It also is vital to critically evaluate
models that might be used to guide land management
(Boone and Krohn, 1999). Although it is tempting to
assess a model with respect to its ability to ‘explain’
observed variation, predictive models must be validated
with independent sets of data. Predictive modelling is
best represented as a four-stage process: (1) model
building, (2) generation of hypotheses (model predic-
tions), (3) hypothesis discrimination, and (4) model



R. Mac Nally et al. | Biological Conservation 110 (2003) 21-31 29

refinement. If stage 3 largely is successful, then the
model can be employed with confidence in land-use
planning. If the outcome of stage 3 initially is less suc-
cessful than desired, then newly collected data can be
used to revise the model—incorporated into the next
model-building phase—and to generate new testable
hypotheses. Using a model that is not demonstrably
successful clearly offers no advantages.

Species richness of different taxonomic groups often is
driven by different environmental factors and may not
be correlated at spatial and temporal scales relevant to
managers (Erhardt, 1985; Thomas and Mallorie, 1985;
Dobkin and Wilcox, 1986; Murphy and Wilcox, 1986;
Wilcox et al., 1986; Hafernik, 1992; Kremen, 1992; Pre-
ndergast et al., 1993; Launer and Murphy, 1994; Holl,
1995). Nonetheless, a model that is successful for even a
single taxonomic group can benefit land-use planning.
Not only do managers frequently have a mandate to
minimize species losses among all taxonomic groups,
but also some taxa, including butterflies, are relatively
easy to study and monitor and serve as possible ‘flag-
ship species’ (New et al., 1995; Simberloff, 1998; Caro
and O’Doherty, 1999) for public education.
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