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Abstract: Ecologists often seek to predict species distributions as functions of abiotic environmental vari-
ables. Statistical models are useful for making predictions about the occurrence of species based on variables
derived from remote sensing or geographic information systems. We previously used 14 topograpbically
based environmental variables from 49 locations in the Toquima Range (Nevada, U.S.A.) and species inven-
tories conducted over 4 years (1996-1999) to model logistically the occurrence of resident butterfly species.
To test the models, we collected new validation data in 39 locations in the nearby Shoshone Mountains in
2000-2001. We used a series of “classification rules” based on conventional logistic and Bayesian criteria to
assess the success rates of predictions. The classification rules represented a gradient of stringency in the “cer-
tainty” with which predictions were made. More stringent rules reduced the number of predictions made but
greatly increased the success rate of predictions. For comparisons of classification rules making similar num-
bers of predictions, conventional logistic and Bayesian criteria produced similar outcomes. Success rates for
predicted absences were uniformly bigher than for predicted presences. Increasing the temporal extent of
data from 1 to 2 years elevated success rates for predicted presences but decreased success rates for predicted
absences, leaving the overall success rates essentially the same. Although species occurrence rates (the propor-
tion of locations in which each species was found) were correlated between the modeling and validation
data sets, occurrence rates for many species increased or decreased substantially; erroneous predictions were
more likely for those taxa. Model fit (measured by the explained deviance) was an indicator of the probable
success rate of predicted presences but not of predicted absences or overall success rates. We suggest that clas-
sification rules for predicting likely presences and absences may be decoupled to improve overall predictive
success. Our general framework for modeling species occurrence is applicable to virtually any taxonomic
group or ecosystem.

Pruebas de Validacion de Modelos Predictivos de Ocurrencia de Mariposas Basados en Variables Ambientales

Resumen: A menudo los ecélogos tratan de predecir la distribucion de especies en funcion de variables am-
bientales abioticas. Los modelos estadisticos son ttiles para hacer predicciones sobre la presencia de especies
en base a variables derivadas de sistemas de percepcion remota o de informacion geografica. Previamente
utilizamos 14 variables ambientales topogrdficas de 49 localidades en las Montarias Toquima (Nevada,
EE.UU.) e inventarios de especies realizados a lo largo de cuatro aiios (1996-1999) para modelar logistica-
mente la presencia de especies de mariposas residentes. Para poner a prueba los modelos, recolectamos nue-
vos datos de validacion en 39 localidades en las Montaiias Shoshone cercanas en 2000 y 2001. Utilizamos
una serie de “reglas de clasificacion” basadas en criterios logisticos convencionales y Bayesianos para eval-
uar las tasas de éxito de las predicciones. Las reglas de clasificacion representaron un gradiente de estrechez
en cuanto a la “certidumbre” con la que se bicieron las predicciones. Las reglas mads estrechas redujeron el
numero de predicciones pero incrementaron significativamente las tasas de éxito predictivo. Para compara-
ciones de reglas de clasificacion con niimeros de predicciones similares, los criterios logisticos convencionales
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y Bayesianos produjeron resultados similares. Las tasas de éxito para ausencias predichas fueron uniforme-
mente superiores que las de presencias predichas. El incremento en la extension temporal de los datos de un
ario a dos aumento las tasas de éxito para presencias predichas pero disminuyé las tasas de éxito para
ausencias predichas, con lo que las tasas de éxito en general permanecieron iguales. Aunque las tasas de
presencia de especies (proporcion de localidades en la que se encontré a cada especie) se correlacionaron en-
tre los conjuntos de datos de modelacion y los de validacion, las tasas de presencia de muchas especies au-
mentaron o disminuyeron sustancialmente; para esos taxones las predicciones erréneas fueron mds proba-
bles. El ajuste del modelo (medido por la desviacion explicada) fue un indicador de la probable tasa de éxito
de presencias predichas pero no de ausencias predichas ni tasas de éxito totales. Sugerimos que las reglas de
clasificacion utilizadas para predecir probables presencias y para predecir probables ausencias pueden ser
desacopladas para mejorar el éxito predictivo total. Nuestro marco general para modelar la ocurrencia de es-
pecies es aplicable a virtualmente cualquier grupo taxonoémico o ecosistema.

Introduction

Explaining and predicting distributions of species rank
among the primary goals in ecology and biogeography.
Distribution patterns reflect complex relationships be-
tween biogeographic history, interspecific interactions,
resource requirements and tolerances, and in situ evolu-
tion (Huston 1994; Rosenzweig 1995; Roughgarden 1995).
Although interspecific interactions and evolutionary re-
sponses traditionally have dominated studies of species
distributions, the increasing availability of extensive data-
bases, land models, and computing power has stimulated
a pragmatic shift toward statistically based approaches
(e.g., Austin et al. 1990; Guisan & Zimmermann 2000;
Jackson et al. 2000; Bell 2001). Although the distribu-
tions of species of interest may overlap, occurrence pat-
terns are often examined on a single-species basis (Cody
1986; Tardif & DesGranges 1998; Rubinoff 2001).

Modeling species occurrence as a function of environ-
mental variables that can be quantified easily, at rela-
tively small spatial grains, and over extensive areas is
particularly appealing (Angermeier & Winston 1999;
Cowley et al. 2000; Kerr et al. 2001). Although efforts to
predict occurrence as a function of resource require-
ments, such as prey availability or nesting sites, are often
successful (Hanski & Gilpin 1997; Hanski 1999; Miller &
Cale 2000; Germaine & Wakeling 2001), obtaining these
data can be expensive and labor-intensive. Indeed, con-
ducting fine-grained measurement of habitat might re-
quire as much effort as surveying the focal biota itself. In
contrast, data sets and methods for deriving topographic
and climatic variables are becoming widely accessible,
and obtaining values for these variables does not require
field visits. In some cases, modeling species occurrence
as a function of environmental variables also allows us to
predict whether climate change or landscape recon-
struction may alter occurrence probabilities (Loreau et
al. 2001; Fleishman et al. 2001a).

To be useful, the predictions of species-occurrence
models must be tested explicitly according to clearly de-
fined criteria (Guisan & Zimmermann 2000; Jackson et
al. 2000). The process of generating and testing model

predictions increases our understanding of relation-
ships between organisms and environmental variables
and contributes to the scientific foundation for regional
conservation planning (Mac Nally & Bennett 1997; Hawk-
ins et al. 2000; Mac Nally et al. 2000).

Our objective is to develop a general framework for
building, testing, and refining models of species occur-
rence that can be applied to any taxonomic group or
ecosystem. We previously built statistically significant
models for 36 of the 56 resident species of butterflies re-
corded from the 1750-km? Toquima Range (Lander and
Nye counties, Nevada, U.S.A.), a mountain range in the
central Great Basin of western North America (Fleish-
man et al. 200156). To test the models, we conducted 2
years of species inventories in the Shoshone Mountains,
a 1600-km? mountain range 40 km west of the Toquima
Range. The Toquima Range and Shoshone Mountains are
within the same biogeographic subregion (Austin & Mur-
phy 1987). The two ranges have similar climates, a com-
mon biogeographic past and ancestral biota, and compa-
rable land-use histories.

In temperate regions, butterflies are excellent study
organisms. They are well known ecologically, relatively
amenable to field study, appealing to the general public,
and sometimes able to respond rapidly to environmental
change (Scott 1986; New 1991; Kremen 1992; Prender-
gast et al. 1993; Harding et al. 1995; Blair & Launer 1997).
From a conservation perspective, the Great Basin is an
appropriate focal system because the majority of the
area is public land that is managed for multiple and often
conflicting uses. Also, many native species in the Great
Basin are threatened by climate change, modified distur-
bance regimes, and invasions of non-native species (Mc-
Donald & Brown 1992; Murphy & Weiss 1992; Fleish-
man et al. 1998, 2001a; Warren et al. 2001).

We based models of butterfly occurrence on 14 predic-
tor variables derivable from digital elevation models. Each
predictor variable was significant in a model for at least
one species (Fleishman et al. 20015). Quadratic (squared)
versions of the predictor variables were also used to cap-
ture possible nonlinear responses (e.g., a species’ pref-
erence for intermediate values of a variable).
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We chose to test our models with data from a new
mountain range because we were interested in evaluat-
ing the spatial extent of model applicability (i.e.,
whether models are “transferable” to new locations).
Biogeographers sometimes have treated mountain
ranges in the Great Basin as replicates (e.g., Brown
1978; McDonald & Brown 1992; Boggs & Murphy 1997;
Murphy & Weiss 1992; but see Lawlor 1998). Thus, they
assumed, at least implicitly, that species’ responses to
environmental gradients would be comparable among
mountain ranges. We have empirical evidence that rela-
tionships between measures of species diversity (such
as species richness) and major environmental gradients
(such as elevation and area) are not uniform among
mountain ranges (Fleishman et al. 2000). Even when a
measure of diversity is significantly associated with a
particular environmental gradient in several mountain
ranges, the functional relationship between diversity
and the gradient may differ (Fleishman et al. 2001a; Mac
Nally et al. 2002). Therefore, we specifically wanted to
determine whether predictors of occurrence were simi-
lar among mountain ranges.

Classification Rules

Statisticians have expended much effort in developing
“classification rules” for characterizing predictive suc-
cess. Because we relate success rates to the classification
rule used, our assessments provide more information
than if we merely tested whether our predictions were
correct. We used two broad sets of rules. The first was a
conventional set of rules based on ordinary logistic clas-
sification; the second set was based on posterior proba-
bility distributions of occurrence (presence or absence)
derived from Bayesian calculations (Fleishman et al.
20010; for a general overview of Bayesian statistical
methods, see Bergerud & Reed 1998 and references
therein). We examined the two sets of rules for similar
results because some workers are strong advocates of
Bayes approaches (e.g., Crome et al. 1996), but Bayes
calculations are generally more difficult to do.

CONVENTIONAL LOGISTIC CLASSIFICATION

When data for predictor variables are substituted into a
logistic-regression model for a species, the result is an es-
timated probability of occurrence, p. Typically, if p <
0.5, then the species is predicted to be absent. If p =
0.5, the species is predicted to be present. However,
more-stringent classification rules can be used; predic-
tions can be made only for locations at which a species is
predicted to be absent or present with a given degree of
confidence. For example, one might predict that a spe-
cies will be absent if p < 0.2 and present if p = 0.8. Pre-
dictions would not be made for cases with intermediate
values (e.g., [) ~ 0.4). Because the predictions for some
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locations are highly uncertain, a consequence of using
more-stringent rules is that fewer predictions are made.

BAYESIAN CLASSIFICATION

When using Bayes-based rules, we consider the poste-
rior probability distribution of p. Bayesian calculations
involve the computation of a “joint posterior probability
distribution” for all model parameters (and the data), in-
cluding, in this case, the regression coefficients and loca-
tion-specific probabilities of occurrence (i.e., j)). We
think that the confidence of predictions of presence or
absence relates to where the bulk of the probability for
P lies, so that if most of the probability mass is, say, in
the region where p = 0.2, then the species is expected
to be absent (i.e., “very unlikely” present). Alternatively,
if most of the mass is where p = 0.8, then the species is
expected to be present (i.e., “very likely” present). In
these Bayesian rules, different levels of stringency are
reached by using different proportions (e.g., =25% or
=80%) of probability mass in either the very unlikely or
very likely compartments of the posterior probability
distribution.

Objectives

We assessed overall success rates, the success rates of ab-
sence predictions, and the success rates of presence pre-
dictions with conventional and Bayesian suites of classifi-
cation rules. In addition, because the point at which a
“snapshot” of occupancy is taken can affect parameter
estimation and model accuracy, we compared success
rates relative to the number of years of inventory data (1
year vs. 2 years). A single snapshot of occupancy may be
adequate if it represents longer-term occupancy patterns
well, but parameters and validation tests based on tempo-
rally extensive data are generally expected to yield more-
accurate predictions (Hanski 1994, 1999; Hanski et al. 1996;
Moilanen 1999, 2000). We further explored whether suc-
cess rates depend on the fit of the model, measured by
the proportion of explained deviance during the model-
building phase. We also considered success rates in light
of the biology of individual species and the environmen-
tal characteristics of particular locations.

Methods

Study System and Field Methods

The Great Basin is an extensive region of internal drain-
age bounded by the Sierra Nevada in the west and the
Wasatch Range in the east (Grayson 1993). The topogra-
phy of the Great Basin is dominated by more than 200
mountain ranges that are climatically isolated from the
surrounding valleys (Brown 1978; Grayson 1993). Re-



Fleishman et al.

source agencies generally develop separate management
plans for individual mountain ranges.

From 1996 to 1999, we used standard methods to con-
duct comprehensive inventories of butterflies in 10 can-
yons in the Toquima Range. We divided canyons into
multiple segments from base to crest (49 total). Each
segment was 100 m wide and extended for approxi-
mately 100 m change in elevation. Mean segment length
was >1 km, which is greater than the dispersal dis-
tances of virtually all resident butterflies (Fleishman et
al. 1997). The Toquima Range data were used to build
our occurrence models.

From 2000 to 2001, we used the same field methods
to conduct inventories of butterflies in a total of 39 seg-
ments in eight canyons in the nearby Shoshone Moun-
tains. The Shoshone Mountain data were used to test the
predictions of our occurrence models. During 2000, we
conducted inventories of butterflies in 22 canyon seg-
ments in four canyons. During 2001, we continued to
collect data from those 22 canyon segments and inven-
toried 17 additional segments in four new canyons.
Thus, our validation data set included information on
species occurrence from 39 new segments.

Butterfly inventory methods are described in exten-
sive detail by Fleishman et al. (1998, 2000). Using these
well-established methods, it is unlikely that we failed to
detect species that actually were present in a given seg-
ment in a field season (Shapiro 1975; Thomas & Mallorie
1985; Swengel 1990; Kremen 1992; Pollard & Yates 1993;
Harding et al. 1995). Moreover, field personnel were fa-
miliar with the regional butterfly fauna, and we re-
stricted our inventories to weather most favorable for
flight. It is reasonable to infer that a given butterfly spe-
cies is absent if the area has been searched with these
methods during the appropriate season and weather
conditions (Pullin 1995; Reed 1996).

We delineated canyon segments by overlaying differ-
entially corrected global positioning system locations on
a 30-m (1:24,000) digital elevation model maintained on
a geographic information system. For each canyon seg-
ment, we derived 14 predictor environmental variables
that reasonably might be expected to affect and thus to
predict butterfly distributions. These variables, includ-
ing geographic coordinates, elevation, slope and aspect,
length, precipitation, solar insolation, topographic expo-
sure and heterogeneity, and distance to the nearest
source of running or standing water (for a complete de-
scription see Fleishman et al. 20015; Mac Nally et al.
2002) were derived from electronic sources of data in
combination with ArcView 3.2 and Arc Macro Language
scripts (Arc/Info 7 or 8.2).

Our approach to developing predictive models of spe-
cies occurrence has four phases (for full details see
Fleishman et al. 2001b). The first three phases—primary
variable screening, secondary variable screening using
logistic regression, and logistic model fitting—comprise
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the model-building process. The fourth phase is model
validation.

Model Building

PRIMARY VARIABLE SCREENING

Each species of butterfly was modeled separately. Prior
to model calculations, all predictor variables were stan-
dardized by

X' = Xip—Xr)/sp, ¢}

where the mean (X ) and standard deviation (s) of vari-
able & were used for each canyon segment 7. Because
models were to be derived from 14 predictor variables
and their squares, we had to evaluate millions of possible
models for each species. We used an exhaustive-search
screening of all models, selecting those that produced a
minimum value of Schwarz’s (1978) information crite-
rion. This criterion is an optimization between model fit
(measured by the proportion of explained deviance) and
model complexity (measured by the number of predictor
variables). The screening approach was based on ordi-
nary multiple linear regression because this can be auto-
mated for many millions of models. Logistic-regression
modeling relies on iterative procedures and therefore is
much slower and difficult to automate. Thus, we assumed
that the multiple linear regression approach would yield a
suitable set of candidate predictor variables, although this
initial modeling was not strictly appropriate.

SECONDARY VARIABLE SCREENING USING CONVENTIONAL
LOGISTIC MODELING

We used conventional logistic-based maximum-likeli-
hood models to select the single most appropriate
model for each species from the limited set of predictor
variables derived from the first stage. In the second
stage, we retained the most complex model statistically
justifiable given model fit (Crawley 1993).

LOGISTIC MODEL FITTING

Next, we fitted models using Bayesian logistic regression
and computed them using the BUGS (Bayesian Updating
using Gibbs Sampling) programing framework (Spielgel-
halter et al. 1996). In the original Bayesian modeling, pa-
rameters were given “vague” priors because we had little
information upon which to construct prior distributions
for regression coefficients (Fleishman et al. 20015).

The Bayesian framework provided not only estimated dis-
tributions for model parameters but also simulated “poste-
rior” distributions of probabilities of occurrence (termed
w; values) for each canyon segment 7 given the values of
the predictor variables. We divided the distribution into
five probability compartments: 0 = m; < 0.2 = very un-
likely to be present, 0.2 = m; < 0.4 = unlikely, 0.4 =, <
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0.6 = indeterminate, 0.6 = m; < 0.8 = likely, and 0.8 =
m; = 1.0 = very likely. The proportion of the posterior
probability mass in each compartment was an indicator of
the species’ probability of occurrence in segment 7.

Model Validation

We tested occurrence models for each species by using
independent sets of data from the Shoshone Mountains
that were not used to build the models. If values for a
predictor variable at a validation site in a given model
were outside the range of the data used in the model-
building phase (for that variable), then the site was not
included for the butterfly species involved. Otherwise,
we standardized the values for the set of predictor vari-
ables for the validation segments by using the means and
standard deviations from the model-building phase. The
BUGS models with the computed regression-coefficient
distributions from the model-building phase were used
in conjunction with the standardized data from the new
segments to generate posterior m-value distributions for
those new segments. Our objective during this testing
phase was to evaluate the success rates of the existing
models. Therefore, we did not update parameter esti-
mates for regression coefficients in the usual Bayesian
way (e.g., Lee 1989). Bayesian updating would modify
the models, which we did not yet wish to do.

We computed segment-specific predictions for each
butterfly species with both conventional logistic and
Bayesian classifications. Conventional logistic-regres-
sion calculations used the mean (approximate medians,
given the observed high symmetry of distributions) re-
gression-coefficient values derived from the Bayesian
model-building process. These means were substituted
into the appropriate equation along with standardized
values for the predictor variables so that the values for p
could be derived by “back-calculation.” For Bayesian cal-
culations (BUGS framework), the distributions of regres-
sion coefficients (i.e., means and standard errors) were
used in conjunction with the standardized values for the
predictor variables to compute posterior probability dis-
tributions for p. In effect, the uncertainties in values for
the regression coefficients were built into the Bayesian
calculations but not into the conventional logistic calcu-
lations, although it would be possible to do so in con-
ventional calculations by using Monte Carlo sampling.

VALIDATION CRITERIA

We tested the success rate of three types of occurrence
predictions: (1) correct predictions of species absence
(i.e., {predicted absent and observed absent = [0,0]} as
a proportion of {predicted absent [0, O or 1]}); (2) cor-
rect predictions of species presence (i.e., {predicted
present and observed present [1,1]} as a proportion of
{predicted present [1, O or 1]}); and (3) correct predic-
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tions compared with total predictions made (i.e., ([0,0] +
[1,1]1)/(all predictions)).

In a conventional test of a logistic-regression model for a
species, data for predictor variables from new locations are
used to produce an estimated probability of occurrence, p,
based on the model. If p < 0.5, then the species is pre-
dicted to be absent; if p = 0.5, the species is predicted to
be present. We abbreviate this conventional classification
rule as C(0.5, 0.5). To determine the sensitivity of success
rates to rule stringency, we evaluated model predictions
with six conventional classifications ranging from the stan-
dard C(0.5, 0.5) rule to a very stringent C(0.1, 0.9) rule
(i.e., { p = 0.1 = absence; p = 0.9 presence)).

For our Bayes-based approach, we used the posterior
distributions of the m values to make classification rules.
That is, we only tested predictions for new locations for
which the model predicted a strong positive or negative
probability of occurrence (for example, =70% of the
m-probability mass distribution in either the very likely
or very unlikely compartments, abbreviated as B[0.7]).
As with the conventional classifications, we evaluated the
success rate of model predictions with six Bayes-based
classification rules ranging from a relatively lenient
B(0.25) to a stringent B(0.8).

LEVELS OF ANALYSIS

We conducted analyses at two levels, those of assemblage
and the single species. For the assemblage-level analyses,
we assessed success rates integrated over all butterfly
species that were modeled. We compared the success
rates of various conventional and Bayes-based classifica-
tion rules relative to number of years of inventory data
(2 years for some segments versus 1 year for others).
Single-species success rates were considered in relation
to differences in observed occurrence between data sets
used for model building and for validation and in rela-
tion to model fit in the building phase. We were able to
test the predictions of models for 35 species. Because
values for predictor variables vary in space, and because
models for different species included different predictor
variables, the set of new segments for which predictions
could be made was not identical for all species.

Results
Assemblage-Level Analyses

CONVENTIONAL VERSUS BAYES-BASED CRITERIA

There were 1026 possible predictions of species occur-
rence in canyon segments based on the single-species
models and the environmental attributes of our inventory
locations in the Shoshone Mountains. Predictions for some
segments were tested with 2 years of inventory data,
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whereas other segments could be tested with only 1 year
of data. The difference in temporal extent is not crucial in
these comparisons because we used the same set of data to
compare the conventional and Bayes-based success rates.

Increasing the stringency of classification criteria
greatly reduced the number of predictions made (Fig. 1).
For example, the most stringent conventional rule,
C(0.1, 0.9), produced only 480 predictions, or 47% of
the possible total of 1026. The most stringent Bayes-
based rule, B(0.8), produced only 459 predictions, 45%
of the possible total.

Success rates for overall predictions, predicted ab-
sences, and predicted presences increased with greater
stringency for both conventional and Bayes-based classi-
fication rules (Fig. 2). In all cases, success rates for pre-
dicted absences were substantially higher than for pre-
dicted presences. Although the success rates continued
to increase as a function of stringency based on the con-
ventional rules, there appeared to be a plateau in the
Bayes-based rules beyond which increasing stringency
yielded little further prediction success (e.g., B[0.6] was
similar to B[0.8]).

When a pair of conventional and Bayes-based rules
made a similar number of predictions, we compared the
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Figure 1. Numbers of predictions of species occurrence
made as a function of logistic classification rules em-
Dployed. “Conventional” and “Bayes-based” rules are
defined in the text. The usual conventional rule, C(0.5,
0.5), made predictions for every species-canyon seg-
ment combination (n = 1026). See methods for defini-
tions of abbreviations for classification rules.
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overall success rates of the two rules. For example,
C(0.15, 0.85) made 551 predictions and B(0.6) made
561. In five comparisons, there were no significant dif-
ferences in overall success rates (all 12, 5. | < 0.76,p >
0.4; arcsin-square-root method; Sokal & Rohlf 1969).

After examining all these results, we chose to restrict
the remainder of analyses to the Bayes-based classifica-
tion rule B(0.7), as we advocated previously (Fleishman
et al. 2001b).

TEMPORAL EXTENT OF DATA

Twenty-two of the 39 Shoshone Mountain segments
were inventoried in both 2000 and 2001. For these seg-
ments, the success rates (B[0.7] rule) based on 2 years
of data were not significantly higher than those based on
the first year of data: for all predictions, #;¢s .. = 0.19,
» > 0.8; for absence predictions, #, g5 . = 1.69, p >
0.09; for presence predictions, Z; 5. = 1.28, p > 0.2
(arcsin-square-root method; Sokal & Rohlf 1969).

We performed a similar comparison of the results for
the segments that were inventoried in 2 years (n = 22)
versus the segments that were inventoried in only 1 year
(n = 17). Again, total success rates did not differ signifi-
cantly (4,05 = 0.25, p > 0.8). However, success rates
for presence predictions were significantly greater for
the 2-year segments than for the 1-year segments (74%
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Figure 2. Prediction success rates as a function of clas-
sification rules employed. “Conventional” and “Bayes-
based” rules are defined in the text. Key: black
squares, predicted absences; open circles, overall pre-
dictions; grey squares, predicted presences.
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vs. 62%, lg0s« = 2.17, p = 0.03), whereas the success
rates for absence predictions were significantly lower
for the 2-year segments than for the 1-year segments (71%
vS. 89%, Ly s = —3.42, p < 0.001).

Single-Species Analyses

OVERALL OCCURRENCE RATES

There was a significant correlation between occurrence
rates (the proportion of locations in which a species
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was found) during the model-building phase (Toquima
Range) and the model-validation phase (Shoshone
Mountains) (Spearman’s 7 [tie-corrected] = 0.56, p <
0.001; Fig. 3a). The average occurrence rates in the
model-building phase and validation phase were 0.48
and 0.41, respectively. However, the occurrence of some
species during the two phases differed greatly (Appen-
dix 1). The difference in occurrence may be a temporal
effect (different sets of years, in which variation in
weather conditions and resource availability may have
been sufficient to affect butterfly distributions), a geo-
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Figure 3. (a) Occurrence rates of individual species in
the validation pbase (Shoshone Mountains segments)
Dplotted against occurrence rates in the model-building
Dhase (Toquima Range segments). (b) Overall success
rate of predictions for individual species plotted
against model degree-of-fit (explained deviance). (c)
Success rates for presence predictions of individual
species plotted against model degree-of-fit (explained
deviance).
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graphic effect (Toquima Range vs. Shoshone Mountains),
or both. Three species, Euchloe byantis, Callophrys
affinis, and Neominois ridingsii, with occurrences in
the building phase of 0.12, 0.47, and 0.51, respectively,
were not recorded during the validation phase in the
Shoshone Mountains. All presences predicted for the lat-
ter three taxa in the Shoshone Mountains necessarily
would be incorrect. Occurrence rates of another four
species increased by more than 0.25 (Speyeria callippe,
S. zerene, Glaucopsyche piasus, Coenonympha tullia).
These increases probably elevated the error rates of ab-
sence predictions.

Mean species-specific success rate (B[0.7] rule) was
67% * 29% (SD). Success rates of >90% were recorded
for 13 species, 8 of which were based on predictions for
more than half of the canyon segments inventoried. For
several of the latter 13 species, all predictions were ei-
ther absences (e.g., Euchloe hyantis, Hesperia uncas,
Polygonia zephyrus) or presences (e.g., Lycaeides mel-
issa, Cercyonis oetus, Icaricia icarioides). The results
that may prove most useful for management were for
several species with high success rates for predictions of
both absence and presence. Mitoura siva, for example,
had a success rate of 100% (six correct absence predic-
tions and three correct presence predictions), and Icari-
cia shasta had a success rate of 91% (14 of 15 absence
predictions correct and 6 of 7 presence predictions
correct). Species with poor success rates for predictions
based on more than one-third of the segments invento-
ried included Satyrium bebrii (14 of 21 presence pre-
dictions incorrect, 33% success rate), Glaucopsyche pia-
sus (8 of 12 absence predictions incorrect, 33% success
rate) and Speyeria callippe (10 of 12 absence predic-
tions incorrect, 17% success rate). At least for G. piasus
and S. callippe, a high proportion of incorrect absence
predictions was expected because the species had sub-
stantially higher occurrence rates in the validation phase
than in the model-building phase (0.69 vs. 0.35 for G. pi-
asus, 0.88 vs. 0.27 for S. callippe).

SUCCESS RATES AS A FUNCTION OF MODEL FIT

Overall success rates (B[0.7] rule) were not significantly
correlated with the original model fit (measured by the
proportion of explained deviance in the logistic model)
(Spearman’s r; = 0.32, p > 0.05; Fig. 3b). For example,
eight species had an overall prediction success rate of
100%, but the proportion of explained deviance in the
model-building phase ranged from 0.16 (Phyciodes
pulchella) to 0.61 (Lycaeides melissa). The success rate
of absence predictions was also not correlated with
model fit (Spearman’s , = —0.05, p = 0.8).

However, model fit was correlated with the success
rate of presence predictions (Spearman’s r, = 0.59,
p = 0.005; Fig. 3¢). Three species with predicted pres-
ence success rates of zero had much lower occurrence
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rates in the Shoshone Mountains than in the Toquima
Range (Eupbydryas editha, 0.03 vs. 0.47; Plebejus sae-
piolus, 0 vs. 0.24; Chlosyne acastus, 0.17 vs. 0.68).
When these three species were excluded, the rank cor-
relation between the model fit and success rate of pres-
ence predictions increased to 0.77 (p < 0.001).

Discussion

Importance of Model Validation

We believe that rigorous validation of statistical model-
ing of species distributions has not received sufficient at-
tention. This has led to at least two adverse outcomes.
First, workers may assume that models are correct and
thus are reliable either for use in further research infer-
ence or for management planning. Lack of widespread
validation also has a second, more important conse-
quence: impeded learning. The model-building and vali-
dation process itself generates pertinent research ques-
tions by identifying where our ecological understanding
could be improved.

To illustrate the latter point, consider differences in
the occurrence rates of many species between our
model-building data set (1996-1999, Toquima Range)
and model-validation data set (2000-2001, Shoshone
Mountains). These disparities suggested that as we con-
tinue to collect validation data with which to refine our
models, we should simultaneously conduct inventories
in some new canyon segments in the range used for
model-building (i.e., “validation” sensu stricto within
the same population of sites). This would allow us to de-
termine whether changes in occurrence rates are strictly
temporal, whether there are fundamental geographic
differences between the two mountain ranges (i.e.,
whether models are “transferable”; Leftwich et al. 1997),
or both. If the different occurrence rates largely reflect
deterministic temporal trends, the models may not be
successful even when applied to locations in the range
from which they are based. The extent of geographic
differences provides an indication of the possible spatial
extent of the utility of models. One would expect a de-
cay in model applicability with increasing distance from
the locations used to build the models, but knowledge
of that decay rate is crucial.

Ideally, models would be tested with a validation data
set comparable in temporal and spatial extent to the
model-building data set. In practice, data used to build a
model may sometimes be collected over many years, but
financial or other constraints often limit the collection of
validation data to fewer years or even to just 1 year. The
success of our models did not depend on the number of
years of validation data, and we did not find a difference
in total success rates between years (2000 vs. 2001).
Thus, the main issue in improving data quality appears
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to be discriminating between temporal and spatial
sources of variability in occupancy rates and not neces-
sarily simply collecting more years of validation data
from the same set of locations.

Nonetheless, as the temporal extent of our data in-
creased, we did obtain more successful presence predic-
tions but fewer successful absence predictions. Species
composition in almost every ecological system is tempo-
rally variable to some extent. On the one hand, it is pos-
sible that a species will be present at a study location in
some years but absent in other years (perhaps because
weather conditions are unfavorable). The apparent ab-
sence of a species from a location where it is sometimes
present—because of temporal variability and the imple-
mented survey program—is a “false negative.” Over
time, the probability of false negatives decreases, so the
success of presence predictions should increase. On the
other hand, given a long enough period of time, many
species will appear as “accidentals” in locations that are
outside their typical distributional range. Thus, the suc-
cess of absence predictions is likely to decrease some-
what over time.

Classification Rules: Tradeoffs between Quantity and Quality

Much practical information can be obtained by calculat-
ing prediction success rates with a range of classification
rules, based on both conventional methods and Bayesian
posterior probability distributions. There are many ways
to make a prediction about a species’ occurrence, and
no single classification rule is best under all circum-
stances.

We believe that making inherently poor predictions
for the sake of prediction is not profitable. More-strin-
gent classification rules yield fewer predictions, but the
quality of those predictions is greater. For instance, com-
pare the results for the conventional C(0.5, 0.5) rule
with a more stringent rule, such as B(0.7). The Bayes-
based rule made 512 predictions, almost 50% fewer than
the conventional rule. What was the success rate of the
additional 514 predictions made under the C(0.5, 0.5)
rule? The C(0.5, 0.5) rule predicted an additional 210
absences (i.e., that a given species would be absent in a
given segment), 130 (62%) of which matched the ob-
served field data. The C(0.5, 0.5) rule also made an addi-
tional 304 presence predictions, only 122 (40%) of
which were correct. Thus, the overall success rate for
the 514 extra predictions was just 49%, not much differ-
ent from the rate expected by chance.

The difference in the success rates of the additional
absence or presence predictions made using the C(0.5,
0.5) rule suggests that classification rules for predicting
presences and for predicting absences may be decou-
pled to improve overall predictive success. In some de-
cision-making scenarios, the 62% success rate of the ad-
ditional absence predictions might fall within an acceptable
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level of certainty, although the additional presence pre-
dictions would be eschewed. In principle, one might
employ a mixed approach in which one used all C(0.5,
0.5) absence predictions (overall success rate of 70%),
all the B(0.7) presence predictions (success rate of 69%),
and, for species with a sufficiently high model fit (recall
that success rates for presence predictions were posi-
tively correlated with model fit), the additional C(0.5, 0.5)
presence predictions. This mixed approach would yield
predictions for at least 512 + 210 = 722 species-segment
combinations, possibly close to 800 overall, at a success
rate of approximately 65%.

Interspecific and Spatial Variation

Among species and locations, there was considerable
variation in the success of predictions. Moreover, re-
gardless of whether the overall success rate was high or
low, predictions for some species and locations were
much better for presence than for absence, and vice
versa. For example, although the overall success rate of
predictions for Coenonympba tullia was high (73% us-
ing the B[0.7] rule), predictions for presence (93%)
were much better than for absence (29%). In contrast,
predictions for Chlosyne acastus were weak overall
(33%). The success rate of absence predictions for C.
acastus was high (86%), however, and much greater
than for presence predictions (0%).

For some species, we can draw biological inferences
about why models were successful or unsuccessful. A
few of the species with extremely high success rates
were either nearly ubiquitous or very rare in the Sho-
shone Mountains. Cercyonis oetus, Lycaeides melissa,
and Polygonia zephyrus, with overall model success
rates of >85%, and Shoshone Mountains occupancy
rates of 97%, 97%, and 6%, respectively, are good exam-
ples. The high (approximately 90%) success rate of at
least one species with intermediate occupancy rates in
both mountain ranges, Icaricia shasta, may result from
its known association with high elevations. Biological
explanations for other successful models are not as ap-
parent, suggesting that the models are a real improve-
ment over the intuition of an experienced observer. For
example, 100% of the B(0.7) predictions for Mitoura
siva were correct. Mitoura siva had an intermediate de-
gree of occupancy in both mountain ranges. In the field,
the species does not appear to be restricted to locations
with a characteristic topography, and its larval host-
plant, the juniper tree (Juniperus osteosperma), is far
more widespread than the butterfly. Thus, the occu-
pancy model for Mitoura siva may be a valuable plan-
ning tool despite our current inability to provide an eco-
logical rationale for its success. We can offer at least two
explanations for some of the less successful models.
First, as we noted, occupancy rates for several species
were very different in the model-building and model-val-
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idation data sets. Second, a few other species with
<50% success rates, such as Glaucopsyche piasus and
Satyrium bebrii, have highly stochastic temporal occur-
rence patterns (Fleishman et al. 1997).

We can also interpret some of the relatively high and
low success rates for individual study locations using bi-
ological explanations. Several canyon segments had few
resources for butterflies (e.g., larval host plants, adult
nectar sources, and sources of water) or were climati-
cally severe (e.g., the highest sampled elevations). In
these cases, it is not surprising that success rates, espe-
cially for absence predictions, were high. In contrast,
several of the canyon segments with the highest rates of
successful presence predictions seemed to have rela-
tively abundant resources and diverse topography, loca-
tions where one might expect a priori to encounter
many species of butterflies.

Model Refinement

Notwithstanding some major differences in occurrence
rates of individual species and potential sources of tem-
poral and geographic variability, our models of species
occurrence were relatively successful (73% overall using
the B[0.7] rule), especially for absence predictions (78%).
Our modeling process continues, and we are pursuing
several avenues for model refinement. First, new re-
mote-sensing instruments and terrain-based geographic
information system models can provide improved esti-
mates of environmental variables such as precipitation,
temperature, land-cover type and extent, and leaf-area
index at a moderate spatial resolution (250 m to 1 km)
and at a range of temporal resolutions. These data might
offer greater modeling scope for some species.

Second, the existing set of validation data might be
used to “update” model parameter estimates in the usual
Bayesian way to refine models. The number of locations
for which we currently have inventory data is almost
double the number we used to build the initial models.
These additional data potentially allow models with im-
proved fit and/or predictive success to be constructed
for species that were not modeled well in the first itera-
tion. Third, it may prove worthwhile to use generalized
link functions in the logistic modeling process. The logit
transform is symmetrical about p = 0.5 (Prentice 1976).
It is possible to reframe the logistic link with an addi-
tional exponential parameter to better model species
having occurrence rates substantially different from p =
0.5 (Manel et al. 2001), which may improve overall
modeling success.

Although we used butterflies as a study system, our
methods for building, testing, and refining models of
species occurrence constitute a general framework that
can be applied to any taxonomic group or ecosystem.
We do not advocate any single classification rule. In-
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stead, we have provided information on tradeoffs be-
tween the number of predictions and the quality or
certainty of those predictions which can be used to de-
termine the best rule under a particular set of real-world
circumstances. We hope our work will save managers
and decisionmakers time and money by allowing them
to predict species occurrence in existing landscapes or
in landscapes that may be altered by climate change or
reconstruction efforts.
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