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We have developed a new approach to the measurement of phylogenetic signal in character state matrices called 
relative apparent synapomorphy analysis (RASA). RASA provides a deterministic, statistical measure of natural 
cladistic hierarchy (phylogenetic signal) in character state matrices. The method works by determining whether a 
measure of the rate of increase of cladistic similarity among pairs of taxa as a function of phenetic similarity is 
greater than a null equiprobable rate of increase. Our investigation of the utility and limitations of RASA using 
simulated and bacteriophage T7 data sets indicates that the method has numerous advantages over existing measures 
of signal. A first advantage is computational efficiency. A second advantage is that RASA employs known methods 
of statistical inference, providing measurable sensitivity and power. The performance of RASA is examined under 
various conditions of branching evolution as the number of characters, character states per character, and mutations 
per branch length are varied. RASA appears to provide an unbiased and reliable measure of phylogenetic signal. 
and the general aDDroach Dromises to be useful in the development of new techniques that should increase the rigor 

I . 

and reliability of phylogenetic estimates. 

Introduction 

The determination that a particular data set contains 
phylogenetic signal should be an important first step in 
phylogenetic analyses, because a set of optimal (albeit 
spurious) trees can be inferred under any criterion from 
random (i.e., uninformative) data. While the arsenal of 
quantitative methods available to the practicing phylo- 
genetic systematist holds an array of descriptive statis- 
tics (e.g., as described in Forey et al. 1992), and resam- 
pling methods (e.g., bootstrap; Felsenstein 1985) aimed 
at addressing the issue of certainty in phylogenetics, the 
sensitivity and power of these methods are largely un- 
known. Power here is used in the statistical sense (1 - 
power [Type II error]), and should not be conflated with 
the usage by Penny et al. (1993) and Hillis, Hulsenbeck, 
and Swofford (1994), who write of algorithmic power 
and efficiency. The probability of failing to reject a false 
null hypothesis is difficult to measure in the absence of 
stated nulls, independent probability distributions, error 
terms, and test statistics and their critical values. As the 
true history of past diversification for a given group is 
unknown, no objective criterion of truth exists for phy- 
logenetic trees; thus, confidence is a difficult thing to 
assess in phylogenetics. Some recent methods include 
sites tests (Kishino-Hasagawa 1989; Steel, Lockhart, 
and Penny 1995), a GC-modified test (Steel, Lockhart, 
and Penny 1993), the complete and partial bootstrap 
(Zharkikh and Li 1995), and a goodness-of-fit test of 
pattern frequencies (Czelusniak and Goodman 1995). 
These approaches are largely aimed at choosing among 
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alternative hypotheses of phylogeny as may be inferred 
from available data, or testing for specific sources of 
misleading pattern. Exactly how to report confidence in 
trees remains a nascent field of study (Archie 1989; Go- 
loboff 1991; Huelsenbeck 1991; Mooers 1995). How- 
ever, it is analytic that reliable trees should be found 
with a higher frequency when data used to infer the 
relationships contain phylogenetic signal (= natural cla- 
distic hierarchy = character covariation; Archie 1989; 
Faith and Cranston 1991). The ideal measure of phylo- 
genetic signal should be able to discern between pattern 
due to convergence (Faith 1989), and nonindependence 
of character state evolution. Methods developed thus far 
to measure phylogenetic signal include tree-length dis- 
tribution (TLD) central moments (e.g., gl; Hillis 1991; 
Huelsenbeck I99 1 ), and permutation tail probability 
tests (PTP tests; Archie 1989; Faith and Cranston 1991). 
Steel, Lockhart, and Penny (1993) found that the PTP 
and bootstrap could provide misleading results with ran- 
dom data. Furthermore, complete enumeration of these 
tests requires knowledge of the length of the most par- 
simonious tree (mpt) and of the TLD for the central 
moments statistics (gl; Hillis 1991). This fact makes 
exact realization of these measures computationally in- 
tensive, as their solutions are only available through 
tree-building algorithms that involve exhaustive search- 
es for the mpt. 

The problem of finding an efficient algorithm to 
guarantee knowledge of the mpt is known to be an NP- 
complete problem (Garey and Johnson 1979; Warnow 
1993). NP-complete problems are those for which an 
efficient algorithm is thought to be impossible. The cost 
of efficient algorithms can, by definition, be described 
using polynomial terms (Garey and Johnson 1979). An 
algorithm described by a cost equation that includes any 
exponent is not considered efficient. 

Usual “solutions” to NP-complete problems in- 
clude heuristic approximations, randomization steps, 
and resampling methods (i.e., pseudopolynomial time 
solutions; Garey and Johnson 1979). However, such 
“solutions” can carry costs in the form of newly emer- 
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gent properties, such as entry-order sensitivity. Entry- 
order sensitivity occurs when different solutions can be 
achieved with the same data set by changing the se- 
quence of input. This property exists for some algo- 
rithms (especially those that are nondeterministic sensu 
Warnow 1993). Some examples include algorithms that 
perform heuristic searches for the mpt (Maddison 1991), 
as well as many multivariate ordination and classifica- 
tion analyses (Tausch et al. 1996). With respect to the 
measurement of phylogenetic signal, entry-order sensi- 
tivity has not been shown, but seems to be quite likely 
for approximate, nondeterministic solutions for gl and 
PTP, especially in light of the fact that biased estimates 
may exist due to unequal topology probabilities (Sim- 
berloff 1987) and deviations of observed null frequen- 
cies from Markovian expectation (Losos and Alder 
1995). In this paper, we present a method (relative ap- 
parent synapomorphy analysis [RASA]) that provides a 
deterministic measure of phylogenetic signal in poly- 
nomial time. 

The RASA Algorithm 
The Philosophical Basis for RASA 

This approach to the problem of measuring phy- 
logenetic signal is based on the relationship between the 
basic unit of currency in phylogenetic systematics (par- 
simony methods) and the building blocks of a given 
phylogeny. The universal axiom in maximum-parsimo- 
ny analyses is that monophyletic groups are deduced 
from shared character states, or synapomorphies (Hen- 
nig 1966; Wiley 1981). Synapomorphies are the curren- 
cy of the phylogenetic systematist, and are usually in- 
ferred in a post hoc fashion (but see Steel, Lockhart, and 
Penny 1993) after the application of some criterion for 
tree selection (usually minimum distance). The building 
blocks of any phylogenetic tree are three-taxon state- 
ments (TTS; e.g., Nelson and Platnick 1991), and any 
phylogeny can be reduced to its component TTSs (Wiley 
1981). TTSs have a characteristic that is unique among 
n-taxon statements: they are the only nontrivial n-taxon 
statements that have fewer possible items of error than 
members. In fact, they can represent one and only one 
possible independent error. The relationship between the 
synapomorphy and the TTS is that a resolved TTS is an 
inference made from at least one synapomorphy. 

To measure whether an apparent synapomorphy S 
denotes evolutionary kinship for taxa i and j (or whether 
it represents an error), the total number of times taxa i 
and j share S to the exclusion of another taxon provides 
information on how unique that single observed simi- 
larity is. Each of m taxon pairs can be assigned a Rel- 
ative Apparent Synapomorphy score (KG,,), determined 
to be 

RAS,,, = 2 2 r 
ktA (.-I 

where A is a set of taxa for which character state c(A) 
# c(n), or c(n),, and N = the Nth taxon such that i # j 

# k. For the nth character, taxon k E A, taxa i and j E 
A, and r = 1 if character state c(n); = C(IZ), # c(n)k. 
RAS,, is the number of times a taxon other than i andj 
has a different character state when i and j share the 
same character state. Multistate characters need not be 
binary-recoded. 

The basic tenet of the Hennigian auxiliary principle 
(Hennig 1966) is that the lowest possible number of 
changes along all anagenetic lineages best represents the 
pattern of evolutionary change for all characters for all 
taxa everywhere. While this principle may hold true 
most of the time, its universal truth can be rejected on 
the basis of parsimony (it is simpler to envisage a world 
where evolution occurs at least sometimes in a nonpar- 
simonious fashion) and the ease with which the principle 
is falsified for some characters (e.g., transitional changes 
at some positions in DNA sequences). 

RAS,, is the sum of the number of times taxa i and 
j share any character state to the exclusion of another 
taxon, all characters considered. The RAS score conveys 
information on how much unique similarity exists be- 
tween two taxa with no redundant information added. 
In general, for a character to he potentially informative, 
at least two taxa must share one character state to the 
exclusion of at least one other taxon. Uninformative 
characters which have insufficient or excessive variabil- 
ity are irrelevant to the determination of RAS,. A closely 
related pair of taxa in a given matrix will share a high 
RAS, as they ought to share more derived states to the 
exclusion of more taxa than do pairs of taxa that are 
more distantly related, which will exhibit low RAS 
scores. 

A reasonable relaxation of Hennig’s auxiliary prin- 
ciple permits the position that any two identical char- 
acter states in different taxa may have arisen indepen- 
dently, and therefore may not be true synapomorphies 
(i.e., “assume convergence [noise] until sufficient evi- 

RAS,; will tend to increase as a function of the over- 
all similarity of i and j. Let E, = the number of char- 
acters that can support the three-taxon statement (((i, j), 
k)). This phenetic (distance) measure of similarity uses 
only shared character states that are potentially infor- 

dence is found to reject the null”). A TTS based on a 
particular shared character state may therefore also rep- 
resent an error. Therefore, a particular character state 
shared between two taxa to the exclusion of other taxa 
might most accurately be described as an apparent syn- 
apomorphy (i.e., it might represent a convergence). This 
view is compatible with the fusion between phenetic 
(similarity) and cladistic approaches made possible by 
Hadamard conjugations used in spectral analysis (Wad- 
dell et al. 1993), through which similarity and character 
pattern are invertible. The distinction between cladistics 
and phenetics remains, however, because cladistic error 
exists in the form of increased (or decreased) similarity 
that occurs independent of phylogeny. 

This approach represents a significant departure 
from the traditional viewpoint of phylogenetic system- 
atics. Here, it is assumed a priori that each and every 
potential synapomorphy and any inferred TTS may rep- 
resent individual errors. 
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I 

FIG. I .-Topology used by Hillis et al. (1991) to conduct exper- 
imental phylogenesis using cultures of the bacteriophage T7. Taxon R 
represents the outgroup used. 

the property of equal probability of mutation for all 
characters on a branch and for branches of the same 
length. Homoplasy occurs as a function of the number 
of character states for a particular character (C, B, p). 
A set of iterations refers to 100 histories of evolutionary 
change for a given combination of C, p, and L, and 
“evolved data” refers to taxon X character matrices that 
result from a set of iterations. Random data and muta- 
tions were generated with the random number generator 
in the Macintosh Toolbox. 

Results 
Correct Inference: Signal from a Known Phylogeny 

Hillis et al.‘s (1991) experimental phylogenesis of 
the bacteriophage T7 provides a good reference point to 
exemplify the application of RASA. Using the topology 
in figure 1, they subjected lineages of the T7 phage to 
a known mutagen, and retrieved 202 potentially infor- 
mative restriction sites from the terminal and nodal pop- 
ulations. Every method of phylogenetic inference em- 
ployed (Hillis et al. 1991) recovered the known topol- 
ogy; furthermore, some methods were extremely accu- 
rate at reconstructing ancestral character states (up to 
98%). 

Given the success of all phylogenetic methods test- 
ed in reconstructing the known history, this matrix 
should contain phylogenetic signal. The matrix of ter- 
minal lineages (excluding characters with missing val- 
ues), when subjected to RASA, shows significant dif- 
ference between the observed and null slopes of char- 
acter covariation (Poha = 4.0235, &ii = 1.694, fRASA = 
11.316, df = 24, P < 0.001; fig. 2A). If the appropriate 
outgroup is defined (taxon R, fig. l), and outgroup char- 
acter states are constrained, the test is slightly more sig- 
nificant (Pobs = 4.521, Pnul, = 3.192, t,,,, = 12.684, 
df = 17, P < 0.001; fig. 2B). 

Precision and the Power of the Test 

If tRASA is an unbiased and reliable measure of the 
presence of phylogenetic signal with power, it should 
result in the correct inference both in the presence and 
absence of signal. First, if RASA is sensitive to signal, 
then when signal is present, tRAsA should be higher than 
the critical value (tcrit) for the specified degrees of free- 
dom. Data matrices resulting from simulated branching 
evolution should contain phylogenetic signal; however, 
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FIG. 2.-RASA plots (A, unrooted; 5, rooted with taxon R) from 

the restriction site data from terminal populations of the bacteriophage 
T7 J-P in Hillis et al. (1991). Each point represents a taxon pair; E is 
a phenetic measure (number of informative character states shared by 
each taxon pair), and RAS is a measure of how unique the cladistic 
similarity is for each pair as determined by equation (1). 

the amount of signal should vary with the following 
parameters: numbers of characters (L), number of alter- 
native character states per character (C), mutation rate 
(p), and branch length (B). If RASA has statistical pow- 
er, then when signal is present, t,,,, should be greater 
than rcrit. The proportion of observations made where 
rRASA > tcrit is called power; 1 - power = probability 
of making a Type II error (failing to reject a false null). 

A cursory test of the power of RASA was con- 
ducted using the seven-taxon topology in figure 3. The 

FIG. 3.-The seven-taxon phylogeny used for all simulations in 
this paper. B is the unit branch length, and all branch lengths are held 
constant to topology. All analyses are unrooted. 
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effect of saturation can be measured by manipulating p, 
while the influence of the numbers of characters can be 
measured by manipulating L. B is held constant to the 
topology. 

General Predictions 

Prediction Gl. The test statistic t,,,, should, in 
general, be positive for evolved data, but this is not to 
be expected for random data. t,,,, should be higher for 
evolved data than for random data, which should have 
a central tendency of 0. 

C-Alternative States per Churacter 

An increase in the number of character states 
should, in general, decrease the amount of convergence 
(homoplasy) under most models of evolution. Charac- 
ters with greater numbers of alternative states (where 
transformation probabilities between states are the same) 
should be generally more informative on the basis that 
the saturation rate should be much slower with multi- 
state characters. In general, multistate characters (evolv- 
ing under this model) should retain more signal than 
binary state characters. 

Prediction Cl. The values of tRASA should gener- 
ally increase with an increase in C for evolved data, but 
should decrease with an increase in C for random data. 
Larger numbers of alternative character states should 
work to decrease the number of possible (random) in- 
tertaxon associations. Increasing the number of alter- 
native character states should allow a greater proportion 
of mutations to remain informative (as homoplasy is less 
probable), thus constraining the associations among taxa 
to those reflecting history for evolved data. 

Sets of iterations for 50 characters were conducted 
using evolved (p = 0.04) and random data to test pre- 
dictions Gl and Cl. One hundred iterations were per- 
formed for each level of C. The overall results strongly 
favor the assertion that tRASA tracks signal and noise and 
can discriminate between evolved and random data (fig. 
4A and B, respectively). Both predictions Gl and Cl 
were satisfied (fig. 4); RASA therefore tracks signal as 
influenced by the number of character states. One unex- 
plained observation is a slight positive central tendency 
m I,,,, with random data (fig. 4B). Use of overall sim- 
ilarity measures instead of E causes a dramatic loss rath- 
er than increase in power (unpublished data), so this not 
due to how E (informative similarity) differs from an 
overall measure of phenetic similarity. It is also note- 
worthy that the random data did not contain a single 
value higher than the t,,it for df = ((7 X 6)/2) - 7 - 
2; the significance of the test is therefore high (<O.OOOl ) 
under these conditions. 

F-Mutation Rate 

Saturation is a likely condition for loci in long- 
separated lineages, and results in the attraction of long 
branches (Felsenstein 1978). Saturation will also occur 
at a given locus if it undergoes a high rate of mutation. 
In either case, informative differences between taxa will 
be lost as signal is, in effect, “erased” by multiple hits 

Evolved Data 

.Jr 

Number of Character States 

_ - Random Data 
1.u 

0.0 . , . , . , . , . , . , . . . . 

0 2 4 6 8 10 12 14 16 18 : 

Number of Character States 

FIG. 4.-Mean t RASA scores for 100 evolved (A) and random (B) 
matrices of seven taxa with 50 characters under a mutation rate of 0.04 
X B. Closed points represent mean t,,,, values for each set of itera- 
tions (L = 50; + = 0.04; 100 iterations of for each level of C). 

at a given locus. Holding B constant to topology and 
varying p is therefore equivalent to holding p constant 
and varying B. Two predictions follow. 

Prediction ml. Signal as measured by RASA 
should vary with increasing p Trivially, signal should 
be zero if k = 0; however, it should then increase to 
some intermediate level of p, and then decrease again 
at high levels of p, as saturation begins to erode signal. 

Prediction m2. At the point of complete saturation, 
the test statistic t,,,, from evolved data should ap- 
proach tRASA for random data (with equal L and C). 

Results from sets of iterations for levels of p = 
0.04, 0.08, 0.16, 0.32, 0.64, 1.28, 2.56, and 5.12 were 
compared to test these predictions. (L = 50, C = 4). 
The curved relationship between p. and t,,,, was found, 
satisfying prediction ml (fig. 5). The peak mean value 
Of tRASA was found at p = 0.08 (fig. 5). Prediction m2 
is also satisfied as mean tRAsA for lo = 1.28, 2.56, and 
5.12 cannot be distinguished from tRASA for random data 
(L = 50, c = 4). 

L-Number of Characters 

Data sets with few characters can be used to infer 
phylogeny (i.e., they can result in a tree); however, larg- 
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FIG. 5.-Low and high values of mutation ()L) on average result 
in submaximal levels of signal (r,,,,). Highest mean fRAsA values were 
found at intermediate levels. Saturation at high levels of p. is respon- 
sible for the reduction of signal. Evolved data only (L = 50; C = 4; 
100 iterations each level of (L). Grey line indicates the critical Student’s 
f-test value for 21 taxon pairs. 

er data sets (higher L) will contain greater numbers of 
informative characters, more compatible characters, and 
therefore increased signal, and therefore more reliable 
estimates of phylogenies. 

Prediction Ll. Signal as measured by RASA 
should be found, on average, to increase with an in- 
crease in L with evolved data. This is expected because 
sets of compatible characters are less likely to be found 
with fewer characters. 

Prediction L2. Variance in t,,,, should decrease 
with greater numbers of characters in evolved data be- 
cause larger sets of compatible characters will more pre- 
cisely record the signal : noise ratio. 

To test predictions Ll and L2, sets of iterations at 
various levels of L (100 at each level ranging from 10 
to 300; C = 4, p_ = 0.04) were conducted. Random 
matrices were also generated for each level of L. Pre- 
dictions Ll and L2 were found to hold. Mean t,,,, for 
evolved data was found to increase with greater numbers 
of characters (fig. 6A), while the variance (reported here 
as the standard error) decreases (fig. 6B). The increase 
in signal for evolved data is asymptotic (fig. 6A), re- 
flecting the increasing precision with which t,,,, mea- 
sures the amount of signal for the prescribed mutation 
rate, number of character states, and topology. It would 
be revealing to determine for a range of values for these 
parameters how many informative characters are re- 
quired to reach this value. 

RASA is a new approach to the detection of phy- 
logenetic signal grounded in statistical principle. RASA 
is compatible with all currently used tree-building al- 
gorithms. However, RASA also represents a significant 
philosophical departure from many existing methods in 
the field of phylogenetic systematics. These differences 
may cause some misunderstanding of RASA on several 
grounds. Of course, this method, like any statistical 
method of inference, also has its limitations. The fol- 

lowing issues might be raised concerning the use of 
RASA: 

1. 

2. 

3. 

The effect (however slight) of the positive central 
tendency in tRASA with random data (fig. 4B) indi- 
cates a slight susceptibility to Type II error. This 
problem is strongly exacerbated by the use of abso- 
lute similarity instead of informative similarity (per- 
sonal observation), suggesting that this source of er- 
ror is minimized by using informative similarity (E). 
Nevertheless, the positive central tendency appears 
to be extremely slight. 
It is possible that data sets with few taxa will appear 
to be devoid of signal due to small taxon sample size. 
Whether this is a limitation of RASA or a strength 
may be a matter of conjecture; a conservative view 
would call for higher stringency with fewer taxa to 
reduce the proportion of Type II errors. The inclusion 
of additional taxa in a study should alleviate the ef- 
fect. We are currently investigating the influences of 
data set size on t,,,,, 
Some data sets may include more than one set of 
covarying characters that reflects signal from con- 
flicting tree topologies (e.g., phylogenetic history and 
convergent adaptation to similar environments). Con- 
flicting but nonetheless real signal in such a matrix 
may mislead some measures of signal, or it may 
work to obscure the signal, depending on how it is 
measured. This may be a limitation of RASA in that 
it would fail to report that multiple contrasting sig- 
nals do in fact exist; however, because it would in- 
dicate a lower amount of signal if internal hetero- 
geneity exists in a given data set, its use would then 
prevent the construction (and application) of a poten- 
tially spurious phylogeny that reveals little about the 
histories recorded by different subsets of characters. 

Research on the comparison of RASA to the gl 
moment (Hillis 1991) and the PTP tests (Faith 1991; 
Faith and Cranston 1992) for signal is needed. RASA 
differs from gl and PTP in that (1) it is an a priori 
measure of phylogenetic signal, (2) it is a tree-indepen- 
dent statistical measure of phylogenetic signal, and (3) 
it is not at all based on the assumptions of maximum 
parsimony. Methods that seek probabilistic support for 
a topology (or pattern) using that topology (or pattern) 
are inductive. For example, the bootstrap requires the 
assumption that the subsampling procedure provides a 
reasonable estimate of the variation that would be found 
in the character state universe if it were better sampled 
instead (Sanderson 1995). Because this assumption is 
untested, a bootstrap value can only provide a measure 
of the probability of inferring a node with the data at 
hand, rather than a measure of probabilistic support for 
the external validity of the resulting inference (i.e., ge- 
neralizability is assumed, not tested by an independent 
criterion). No probabilistic support exists for inductive 
conclusions (Popper 1985). RASA is not inductive; it 
provides probabilistic support for the inference of the 
presence (or absence) of signal in the data in question. 
These differences mean that RASA may not share the 
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FIG. 6.-Data with few characters (L) are expected to result in low signal for both evolved and random data matrices (A and C, respectively), 
while deviation (here as the standard error) in t KASA should decrease for evolved data (B). No trend in mean or variance was found for random 
data (C and D) (C = 4; p. = 0.04; 100 iterations each level of L) 

limitations of gl and PTP and that the caveat may be 
withdrawn at some future point in time. 

Maximum-likelihood methods (e.g., Felsenstein 
198 I ) and character-weighting schemes are dependent 
on very specific underlying models of evolution, and 
require the application of general observations to spe- 
citic instances. Although these approaches may be seen 
as exercises in the amplification of weakened signal, er- 
rors in the assumptions of such models can mislead the 
phylogenetic estimate (Cracraft and Helm-Bychowski 
1991). Extrapolation of results from other studies that 
support particular models is inductive and a potential 
source of error in phylogenetic analyses. Even if the 
presumed processes are true in specific instances, ex- 
trapolation to specific cases may be perilous. Although 
such methods could be applied to the data prior to the 
measurement of signal with RASA, a principle strength 
of RASA is that it avoids inductive reasoning; therefore, 
we believe the use of such methods is philosophically 
inconsistent with the goals of RASA. 

Another direction suggested by this study is the 
search for the general influence and interactions of the 
parameters used in this paper (C, L, p, and a fourth 
parameter, rate variance between lineages) on the 

strength of phylogenetic signal left from a given history. 
Preliminary results indicate that signal as measured by 
RASA decreases under conditions with long branches 
(long edge attraction; Hendy and Penny 1989). More- 
over, our ongoing work indicates that outgroup conver- 
gence does not seem to bias the test as it can for PTP 
(Trueman 1995) due to the fact that rooted RASA anal- 
yses constrain outgroup character states. It also appears 
that RASA does not conflate homoplasy with phyloge- 
netic pattern unless concerted homoplasy greatly out- 
weighs phylogenetic structure in the data. At this time, 
these assertions require further evaluation. 

Finally, given the relative efficiency of the RASA 
algorithm, it would seem prudent to search for a tree- 
building algorithm based on the RASA approach, and 
find noninductive applications toward the identification 
of sets of covarying characters within a data set 
(cliques). We are currently working on each of these 
extensions. 
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APPENDIX 

The RASA approach requires careful consideration 
of the proper determination of the degrees of freedom 
for the homogeneity-of-slopes test. The issues are (I) 
phylogenetic nonindependence, (2) nonindependence 
due to redundant representation of each singular taxon 
N - 1 times in the regression, and (3) the number of 
terms that are estimated. 

Issues 1 and 3 are straightforward: as phylogenetic 
nonindependence is what is being measured, it does not 
play a role, and two slopes and one intercept are esti- 
mated (the null intercept is always zero). Issue 3 is best 
approached from the beginning of the determination of 
RAS,, and E,j, and RAS,,,, and E ““,,. 

On the surface, it would appear that in every case 
the number of degrees of freedom are (N X (N - 1))/2 
- N - 3. However, due to the redundant occurrence of 
taxa (e.g., taxon 1 is found in all pairs containing taxon 
I), it may be considered that the appropriate degrees of 
freedom are at most N - 3. However, two pairwise ma- 
trices (containing the values of RAS, and E,,) are used 
in this test. Both contain (N X (N - 1))/2 entries. Both 
matrices are used to determine both nulls; i.e., RAS,, and 
E,i are used in the determination of RAS,,,, and E ““,,. 
Therefore, one matrix is not free to vary. Therefore, the 
appropriate degrees of freedom are 

fl - 2N - (N X (N - 1)/2) - 3. 
(A-B-C-D} 
A: Total number of cells in both matrices. 
B: two diagonals. 
C: one entire matrix. 
D: two slopes and one intercept. 

As it happens,W - 2N - (N X (N - 1)/2) - 3 = 
(N X (N - 1))/2 - N - 3. This means that the number 
degrees of freedom can be most simply expressed as the 
number of pairs - the number of taxa - 3. 
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